Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.
J Epidemiol Community Health. 2011 Jul;65(7):613-20. doi: 10.1136/jech.2009.102244. Epub 2010 Jun 1.
National estimates of the upcoming diabetes epidemic are needed to understand the distribution of diabetes risk in the population and to inform health policy.
To create and validate a population-based risk prediction tool for incident diabetes using commonly collected national survey data.
With the use of a cohort design that links baseline risk factors to a validated population-based diabetes registry, a model (Diabetes Population Risk Tool (DPoRT)) was developed to predict 9-year risk for diabetes. The probability of developing diabetes was modelled using sex-specific Weibull survival functions for people > 20 years of age without diabetes (N=19,861). The model was validated in two external cohorts in Ontario (N=26,465) and Manitoba (N=9899). Predictive accuracy and model performance were assessed by comparing observed diabetes rates with predicted estimates. Discrimination and calibration were measured using a C statistic and Hosmer-Lemeshow χ² statistic (χ²(H-L)).
Predictive factors included were body mass index, age, ethnicity, hypertension, immigrant status, smoking, education status and heart disease. DPoRT showed good discrimination (C=0.77-0.80) and calibration (χ²(H-L) < 20) in both external validation cohorts.
This algorithm can be used to estimate diabetes incidence and quantify the effect of interventions using routinely collected survey data.
需要对即将到来的糖尿病流行进行国家估计,以了解人群中糖尿病风险的分布,并为卫生政策提供信息。
利用常用的全国性调查数据,建立和验证一种基于人群的糖尿病发病风险预测工具。
采用队列设计,将基线危险因素与经验证的基于人群的糖尿病登记处联系起来,为 20 岁以上无糖尿病的人群(N=19861)建立了一种预测 9 年糖尿病风险的模型(糖尿病人群风险工具(DPoRT))。使用特定于性别的 Weibull 生存函数对糖尿病发病概率进行建模。该模型在安大略省(N=26465)和马尼托巴省(N=9899)的两个外部队列中进行了验证。通过将观察到的糖尿病发病率与预测估计值进行比较,评估预测准确性和模型性能。使用 C 统计量和 Hosmer-Lemeshow χ² 统计量(χ²(H-L))来衡量判别能力和校准。
预测因素包括体重指数、年龄、种族、高血压、移民身份、吸烟、教育程度和心脏病。DPoRT 在两个外部验证队列中均显示出良好的判别能力(C=0.77-0.80)和校准(χ²(H-L) < 20)。
该算法可用于使用常规收集的调查数据估计糖尿病发病率并量化干预措施的效果。