Filipe Hugo A L, Esteves Margarida I M, Henriques César A, Antunes Filipe E
Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal.
EcoXperience, HIESE, Quinta Vale do Espinhal, Penela 3230-343, Portugal.
J Chem Theory Comput. 2020 Jul 14;16(7):4734-4743. doi: 10.1021/acs.jctc.0c00418. Epub 2020 Jun 18.
The characterization of the affinity and binding mechanism of specific molecules to a protein active site is scientifically and industrially relevant for many applications. In principle, this information can be obtained using molecular dynamics (MD) simulations by calculating the free energy profile of the process. However, this is a computationally demanding calculation. Currently, coarse-grained (CG) force fields are very well implemented for MD simulations of biomolecular systems. These computationally efficient force fields are a major advantage to the study of large model systems and/or those requiring long simulation times. The Martini model is currently one of the most popular CG force fields for these systems. For the specific case of protein simulations, to correctly maintain the macromolecular three-dimensional structure, the Martini model needs to include an elastic network (EN). In this work, the effect of protein flexibility, as induced by three EN models compatible with the Martini force field, was tested on the calculation of free energy profiles for protein-ligand binding. The EN models used were ElNeDyn, GoMartini, and GEN. The binding of triolein (TOG) and triacetin (TAG) to a lipase protein ( lipase-TLL) was used as a case study. The results show that inclusion of greater flexibility in the CG parameterization of proteins is of high importance in the calculation of the free energy profiles of protein-ligand systems. However, care must be taken in order to avoid unjustified large protein deformations. In addition, due to molecular flexibility there may be no absolute need for the center of the ligand to reach the center of the protein-binding site. The calculation of the energy profile to a distance of about 0.5 nm from the active site center can be sufficient to differentiate the affinity of different ligands to a protein.
特定分子与蛋白质活性位点的亲和力及结合机制的表征,在许多科学和工业应用中都具有重要意义。原则上,可通过计算该过程的自由能分布,利用分子动力学(MD)模拟来获取此信息。然而,这是一项计算量很大的计算。目前,粗粒度(CG)力场在生物分子系统的MD模拟中得到了很好的应用。这些计算效率高的力场对于研究大型模型系统和/或那些需要长时间模拟的系统而言是一大优势。Martini模型是目前用于这些系统的最流行的CG力场之一。对于蛋白质模拟的特定情况,为了正确维持大分子的三维结构,Martini模型需要包含一个弹性网络(EN)。在这项工作中,测试了与Martini力场兼容的三种EN模型所诱导的蛋白质灵活性对蛋白质-配体结合自由能分布计算的影响。所使用的EN模型为ElNeDyn、GoMartini和GEN。以三油酸甘油酯(TOG)和三乙酸甘油酯(TAG)与脂肪酶蛋白(lipase-TLL)的结合作为案例研究。结果表明,在蛋白质的CG参数化中纳入更大的灵活性,对于蛋白质-配体系统自由能分布的计算非常重要。然而,必须注意避免出现不合理的大蛋白质变形。此外,由于分子灵活性,可能并不绝对需要配体的中心到达蛋白质结合位点的中心。计算距活性位点中心约0.5 nm距离处的能量分布,可能足以区分不同配体对蛋白质的亲和力。