Suppr超能文献

粗粒度弹性网络参数化中蛋白质灵活性对配体结合自由能谱计算的影响。

Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding.

作者信息

Filipe Hugo A L, Esteves Margarida I M, Henriques César A, Antunes Filipe E

机构信息

Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal.

EcoXperience, HIESE, Quinta Vale do Espinhal, Penela 3230-343, Portugal.

出版信息

J Chem Theory Comput. 2020 Jul 14;16(7):4734-4743. doi: 10.1021/acs.jctc.0c00418. Epub 2020 Jun 18.

Abstract

The characterization of the affinity and binding mechanism of specific molecules to a protein active site is scientifically and industrially relevant for many applications. In principle, this information can be obtained using molecular dynamics (MD) simulations by calculating the free energy profile of the process. However, this is a computationally demanding calculation. Currently, coarse-grained (CG) force fields are very well implemented for MD simulations of biomolecular systems. These computationally efficient force fields are a major advantage to the study of large model systems and/or those requiring long simulation times. The Martini model is currently one of the most popular CG force fields for these systems. For the specific case of protein simulations, to correctly maintain the macromolecular three-dimensional structure, the Martini model needs to include an elastic network (EN). In this work, the effect of protein flexibility, as induced by three EN models compatible with the Martini force field, was tested on the calculation of free energy profiles for protein-ligand binding. The EN models used were ElNeDyn, GoMartini, and GEN. The binding of triolein (TOG) and triacetin (TAG) to a lipase protein ( lipase-TLL) was used as a case study. The results show that inclusion of greater flexibility in the CG parameterization of proteins is of high importance in the calculation of the free energy profiles of protein-ligand systems. However, care must be taken in order to avoid unjustified large protein deformations. In addition, due to molecular flexibility there may be no absolute need for the center of the ligand to reach the center of the protein-binding site. The calculation of the energy profile to a distance of about 0.5 nm from the active site center can be sufficient to differentiate the affinity of different ligands to a protein.

摘要

特定分子与蛋白质活性位点的亲和力及结合机制的表征,在许多科学和工业应用中都具有重要意义。原则上,可通过计算该过程的自由能分布,利用分子动力学(MD)模拟来获取此信息。然而,这是一项计算量很大的计算。目前,粗粒度(CG)力场在生物分子系统的MD模拟中得到了很好的应用。这些计算效率高的力场对于研究大型模型系统和/或那些需要长时间模拟的系统而言是一大优势。Martini模型是目前用于这些系统的最流行的CG力场之一。对于蛋白质模拟的特定情况,为了正确维持大分子的三维结构,Martini模型需要包含一个弹性网络(EN)。在这项工作中,测试了与Martini力场兼容的三种EN模型所诱导的蛋白质灵活性对蛋白质-配体结合自由能分布计算的影响。所使用的EN模型为ElNeDyn、GoMartini和GEN。以三油酸甘油酯(TOG)和三乙酸甘油酯(TAG)与脂肪酶蛋白(lipase-TLL)的结合作为案例研究。结果表明,在蛋白质的CG参数化中纳入更大的灵活性,对于蛋白质-配体系统自由能分布的计算非常重要。然而,必须注意避免出现不合理的大蛋白质变形。此外,由于分子灵活性,可能并不绝对需要配体的中心到达蛋白质结合位点的中心。计算距活性位点中心约0.5 nm距离处的能量分布,可能足以区分不同配体对蛋白质的亲和力。

相似文献

1
Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding.
J Chem Theory Comput. 2020 Jul 14;16(7):4734-4743. doi: 10.1021/acs.jctc.0c00418. Epub 2020 Jun 18.
2
The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations.
Chem Phys Lipids. 2018 Mar;211:37-43. doi: 10.1016/j.chemphyslip.2017.10.011. Epub 2017 Nov 10.
3
Coarse-grained molecular dynamics simulations of protein-ligand binding.
J Comput Chem. 2014 Sep 30;35(25):1835-45. doi: 10.1002/jcc.23693. Epub 2014 Jul 21.
4
Fluorescence spectroscopic characterization of Humicola lanuginosa lipase dissolved in its substrate.
Biochim Biophys Acta. 2004 Nov 1;1702(2):181-9. doi: 10.1016/j.bbapap.2004.08.011.
5
CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
J Chem Theory Comput. 2015 Sep 8;11(9):4486-94. doi: 10.1021/acs.jctc.5b00513. Epub 2015 Aug 27.
6
Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
Phys Chem Chem Phys. 2011 Jun 14;13(22):10437-48. doi: 10.1039/c0cp02981e. Epub 2011 Apr 15.
7
Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor.
J Mol Model. 2016 Sep;22(9):227. doi: 10.1007/s00894-016-3092-z. Epub 2016 Aug 26.
10
Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields.
J Chem Theory Comput. 2017 Nov 14;13(11):5753-5765. doi: 10.1021/acs.jctc.7b00840. Epub 2017 Oct 19.

引用本文的文献

1
Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness.
J Chem Theory Comput. 2023 Sep 26;19(18):6047-6061. doi: 10.1021/acs.jctc.3c00641. Epub 2023 Sep 1.
2
Multiscale modeling of thermomechanical properties of stereoregular polymers.
J Mol Model. 2022 Jul 8;28(8):214. doi: 10.1007/s00894-022-05214-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验