More Mahesh P, Deshmukh Prashant K
Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Maharashtra, India. Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India.
Nanotechnology. 2020 Oct 23;31(43):432001. doi: 10.1088/1361-6528/ab996e. Epub 2020 Jun 4.
Graphene, graphene oxide (GO) and graphene quantum dots (GQDs) are expected to play a vital role in the diagnosis of severe ailments. Computer-based simulation approaches are helpful for understanding theoretical tools prior to experimental investigation. These theoretical tools still have a high computational requirement. Thus, more efficient algorithms are required to perform studies on even larger systems. The present review highlights the recent advancement in structural confinement using computer simulation approaches along with biosensory applications of graphene-based materials. The computer simulation approaches help to identify the interaction between interacting molecules and sensing elements like graphene sheets. The simulation approach reduces the wet-lab experiment time and helps to predict the interaction and interacting environment. The experimental investigation can be tuned at a molecular level easily to predict small changes in structural configuration. Here, the molecular simulation study could be useful as an alternative to actual wet experimental approaches. The sensing ability of graphene-based materials is a result of interactions like hydrogen bonding, base-base interaction, and base-to-pi interaction to name a few. These interactions help in designing and engineering a substrate for sensing of various biomolecules.
石墨烯、氧化石墨烯(GO)和石墨烯量子点(GQDs)有望在严重疾病的诊断中发挥至关重要的作用。基于计算机的模拟方法有助于在实验研究之前理解理论工具。这些理论工具仍然具有很高的计算要求。因此,需要更高效的算法来对更大的系统进行研究。本综述重点介绍了使用计算机模拟方法在结构限制方面的最新进展以及基于石墨烯材料的生物传感应用。计算机模拟方法有助于识别相互作用分子与诸如石墨烯片等传感元件之间的相互作用。模拟方法减少了湿实验室实验时间,并有助于预测相互作用和相互作用环境。实验研究可以在分子水平上轻松调整,以预测结构配置的微小变化。在此,分子模拟研究可作为实际湿实验方法的替代方法。基于石墨烯材料的传感能力是氢键、碱基-碱基相互作用和碱基-π相互作用等相互作用的结果。这些相互作用有助于设计和构建用于检测各种生物分子的底物。