El-Sayed Nayera M, Elhaes Hanan, Ibrahim Asmaa, Ibrahim Medhat A
Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt.
Sci Rep. 2024 Sep 20;14(1):21973. doi: 10.1038/s41598-024-71655-1.
This study systematically investigated four types of graphene quantum dots (GQDs) AHEX, ZTRI, ZHEX, and ATRI, and their interactions with glycine to form GQD-glycine complexes. Utilizing density functional theory (DFT) and the PM6 semiempirical method, the study analyzed electronic properties and structure-activity relationships. Global reactivity indices were calculated using Koopmans' theorem, and quantitative structure-activity relationship (QSAR) parameters were assessed via SCIGRESS 0.3. The study further explored interactions using density of states (DOS) and quantum theory of atoms in molecules (QTAIM) analyses. Key findings revealed that glycine interaction significantly increased the total dipole moment (TDM) and decreased the HOMO/LUMO energy gap (ΔE) for the GQD-glycine complexes. Notably, ZTRI/glycine showed a TDM of 4.535 Debye and a reduced ΔE of 0.323 eV, indicating enhanced reactivity. Further interactions with cellulose, chitosan, and sodium alginate identified the ZTRI/glycine/sodium alginate composite as the most reactive, with a TDM of 8.020 Debye and the lowest ΔE of 0.200 eV. This composite also exhibited the highest electrophilicity index (56.421) and lowest chemical hardness (0.145 eV), underscoring its superior reactivity and stability. DOS analysis revealed that biomolecules contributed the most to molecular orbitals, with carbon atoms contributing the least. QTAIM analysis confirmed the greater stability of the ZTRI/glycine/sodium alginate complex compared to other studied composites. These results highlight the enhanced reactivity and stability of GQDs when interacting with glycine and sodium alginate.
本研究系统地研究了四种类型的石墨烯量子点(GQDs)AHEX、ZTRI、ZHEX和ATRI,以及它们与甘氨酸相互作用形成GQD-甘氨酸复合物的情况。利用密度泛函理论(DFT)和PM6半经验方法,该研究分析了电子性质和构效关系。使用库普曼斯定理计算全局反应性指数,并通过SCIGRESS 0.3评估定量构效关系(QSAR)参数。该研究进一步利用态密度(DOS)和分子中的原子量子理论(QTAIM)分析来探索相互作用。主要研究结果表明,甘氨酸相互作用显著增加了GQD-甘氨酸复合物的总偶极矩(TDM),并减小了最高占据分子轨道/最低未占据分子轨道能隙(ΔE)。值得注意的是,ZTRI/甘氨酸的TDM为4.535德拜,ΔE降低至0.323电子伏特,表明反应性增强。与纤维素、壳聚糖和海藻酸钠的进一步相互作用确定ZTRI/甘氨酸/海藻酸钠复合材料反应性最高,TDM为8.020德拜,最低ΔE为0.200电子伏特。该复合材料还表现出最高的亲电指数(56.421)和最低的化学硬度(0.145电子伏特),突出了其卓越的反应性和稳定性。DOS分析表明,生物分子对分子轨道的贡献最大,而碳原子的贡献最小。QTAIM分析证实,与其他研究的复合材料相比,ZTRI/甘氨酸/海藻酸钠复合物具有更高稳定性。这些结果突出了GQDs与甘氨酸和海藻酸钠相互作用时反应性和稳定性的增强。