Suppr超能文献

精准剂量,即刻给药:开发自动动力学以实现基于实时模型的重症患者床边精准抗生素给药决策支持。

Right Dose, Right Now: Development of AutoKinetics for Real Time Model Informed Precision Antibiotic Dosing Decision Support at the Bedside of Critically Ill Patients.

作者信息

Roggeveen Luca F, Guo Tingjie, Driessen Ronald H, Fleuren Lucas M, Thoral Patrick, van der Voort Peter H J, Girbes Armand R J, Bosman Rob J, Elbers Paul

机构信息

Department of Intensive Care Medicine, Amsterdam Medical Data Science (AMDS), Research VUmc Intensive Care (REVIVE), Amsterdam Cardiovascular Science (ACS), Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

Intensive Care Unit, OLVG Oost, Amsterdam, Netherlands.

出版信息

Front Pharmacol. 2020 May 15;11:646. doi: 10.3389/fphar.2020.00646. eCollection 2020.

Abstract

INTRODUCTION

Antibiotic dosing in critically ill patients is challenging because their pharmacokinetics (PK) are altered and may change rapidly with disease progression. Standard dosing frequently leads to inadequate PK exposure. Therapeutic drug monitoring (TDM) offers a potential solution but requires sampling and PK knowledge, which delays decision support. It is our philosophy that antibiotic dosing support should be directly available at the bedside through deep integration into the electronic health record (EHR) system. Therefore we developed AutoKinetics, a clinical decision support system (CDSS) for real time, model informed precision antibiotic dosing.

OBJECTIVE

To provide a detailed description of the design, development, validation, testing, and implementation of AutoKinetics.

METHODS

We created a development framework and used workflow analysis to facilitate integration into popular EHR systems. We used a development cycle to iteratively adjust and expand AutoKinetics functionalities. Furthermore, we performed a literature review to select and integrate pharmacokinetic models for five frequently prescribed antibiotics for sepsis. Finally, we tackled regulatory challenges, in particular those related to the Medical Device Regulation under the European regulatory framework.

RESULTS

We developed a SQL-based relational database as the backend of AutoKinetics. We developed a data loader to retrieve data in real time. We designed a clinical dosing algorithm to find a dose regimen to maintain antibiotic pharmacokinetic exposure within clinically relevant safety constraints. If needed, a loading dose is calculated to minimize the time until steady state is achieved. Finally, adaptive dosing using Bayesian estimation is applied if plasma levels are available. We implemented support for five extensively used antibiotics following model development, calibration, and validation. We integrated AutoKinetics into two popular EHRs (Metavision, Epic) and developed a user interface that provides textual and visual feedback to the physician.

CONCLUSION

We successfully developed a CDSS for real time model informed precision antibiotic dosing at the bedside of the critically ill. This holds great promise for improving sepsis outcome. Therefore, we recently started the Right Dose Right Now multi-center randomized control trial to validate this concept in 420 patients with severe sepsis and septic shock.

摘要

引言

危重症患者的抗生素给药具有挑战性,因为他们的药代动力学(PK)会发生改变,并且可能随着疾病进展而迅速变化。标准给药常常导致药代动力学暴露不足。治疗药物监测(TDM)提供了一种潜在的解决方案,但需要采样和药代动力学知识,这会延迟决策支持。我们的理念是,抗生素给药支持应通过深度集成到电子健康记录(EHR)系统中,直接在床边提供。因此,我们开发了AutoKinetics,这是一种用于实时、模型指导的精准抗生素给药的临床决策支持系统(CDSS)。

目的

详细描述AutoKinetics的设计、开发、验证、测试和实施。

方法

我们创建了一个开发框架,并使用工作流程分析来促进与流行的EHR系统的集成。我们使用一个开发周期来迭代调整和扩展AutoKinetics的功能。此外,我们进行了文献综述,以选择并整合用于脓毒症的五种常用抗生素的药代动力学模型。最后,我们应对监管挑战,特别是与欧洲监管框架下的医疗器械法规相关的挑战。

结果

我们开发了一个基于SQL的关系数据库作为AutoKinetics的后端。我们开发了一个数据加载器以实时检索数据。我们设计了一种临床给药算法,以找到一种给药方案,在临床相关的安全限制内维持抗生素的药代动力学暴露。如果需要,计算负荷剂量以尽量减少达到稳态所需的时间。最后,如果有血浆水平数据,应用基于贝叶斯估计的自适应给药。在模型开发、校准和验证之后,我们实现了对五种广泛使用的抗生素的支持。我们将AutoKinetics集成到两个流行的EHR系统(Metavision、Epic)中,并开发了一个用户界面,为医生提供文本和视觉反馈。

结论

我们成功开发了一种用于危重症患者床边实时模型指导的精准抗生素给药的CDSS。这对于改善脓毒症的治疗结果具有很大的前景。因此,我们最近启动了“立即正确给药”多中心随机对照试验,以在420例严重脓毒症和感染性休克患者中验证这一概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f6/7243359/14879993d260/fphar-11-00646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验