Chen Xingyu, Bründl Michael, Friesacher Theres, Stary-Weinzinger Anna
Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
Front Pharmacol. 2020 May 15;11:721. doi: 10.3389/fphar.2020.00721. eCollection 2020.
Inwardly rectifying potassium (K) channels play important roles in controlling cellular excitability and K ion homeostasis. Under physiological conditions, K channels allow large K influx at potentials negative to the equilibrium potential of K but permit little outward current at potentials positive to the equilibrium potential of K, due to voltage dependent block of outward K flux by cytoplasmic polyamines. These polycationic molecules enter the K channel pore from the intracellular side. They block K ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a K channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.
内向整流钾(K)通道在控制细胞兴奋性和钾离子稳态中发挥着重要作用。在生理条件下,由于细胞质多胺对钾离子外向通量的电压依赖性阻滞,钾通道在低于钾离子平衡电位的电位下允许大量钾离子内流,但在高于钾离子平衡电位的电位下几乎不允许外向电流通过。这些聚阳离子分子从细胞内侧进入钾通道孔。它们在去极化电位下阻断钾离子通过通道的移动,从而确保例如心脏动作电位的长平台期。关于这些带电分子向孔内迁移的深度以及陡峭的电压依赖性是如何产生的关键问题仍不清楚。最近对GIRK2(=Kir3.2)晶体结构的分子动力学(MD)模拟提供了关于钾通道传导机制的前所未有的详细信息。在这里,我们以强内向整流钾通道GIRK2的导电状态为起点,使用外加电场的分子动力学模拟来深入了解腐胺的电压依赖性阻滞。我们长达微秒级的模拟阐明了腐胺在孔中的结合位点细节,并表明电压依赖性整流源于双重机制。