Suppr超能文献

对强内向整流钾通道中多胺阻断电压依赖性的计算洞察。

Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K Channel.

作者信息

Chen Xingyu, Bründl Michael, Friesacher Theres, Stary-Weinzinger Anna

机构信息

Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.

出版信息

Front Pharmacol. 2020 May 15;11:721. doi: 10.3389/fphar.2020.00721. eCollection 2020.

Abstract

Inwardly rectifying potassium (K) channels play important roles in controlling cellular excitability and K ion homeostasis. Under physiological conditions, K channels allow large K influx at potentials negative to the equilibrium potential of K but permit little outward current at potentials positive to the equilibrium potential of K, due to voltage dependent block of outward K flux by cytoplasmic polyamines. These polycationic molecules enter the K channel pore from the intracellular side. They block K ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a K channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.

摘要

内向整流钾(K)通道在控制细胞兴奋性和钾离子稳态中发挥着重要作用。在生理条件下,由于细胞质多胺对钾离子外向通量的电压依赖性阻滞,钾通道在低于钾离子平衡电位的电位下允许大量钾离子内流,但在高于钾离子平衡电位的电位下几乎不允许外向电流通过。这些聚阳离子分子从细胞内侧进入钾通道孔。它们在去极化电位下阻断钾离子通过通道的移动,从而确保例如心脏动作电位的长平台期。关于这些带电分子向孔内迁移的深度以及陡峭的电压依赖性是如何产生的关键问题仍不清楚。最近对GIRK2(=Kir3.2)晶体结构的分子动力学(MD)模拟提供了关于钾通道传导机制的前所未有的详细信息。在这里,我们以强内向整流钾通道GIRK2的导电状态为起点,使用外加电场的分子动力学模拟来深入了解腐胺的电压依赖性阻滞。我们长达微秒级的模拟阐明了腐胺在孔中的结合位点细节,并表明电压依赖性整流源于双重机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aec/7243266/1224d9c18141/fphar-11-00721-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验