Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria.
Novasign GmbH, Vienna, 1190, Austria.
Biotechnol J. 2020 Sep;15(9):e2000121. doi: 10.1002/biot.202000121. Epub 2020 Jun 22.
Process characterization is necessary in the biopharmaceutical industry, leading to concepts such as design of experiments (DoE) in combination with process modeling. However, these methods still have shortcomings, including large numbers of required experiments. The concept of intensified design of experiments (iDoE) is proposed, that is, intra-experimental shifts of critical process parameters (CPP) that combine with hybrid modeling to more rapidly screen a particular design space. To demonstrate these advantages, a comprehensive experimental design of Escherichia coli (E. coli) fed-batch cultivations (20 L) producing recombinant human superoxide dismutase is presented. The accuracy of hybrid models trained on iDoE and on a fractional-factorial design is evaluated, without intra-experimental shifts, to simultaneously predict the biomass concentration and product titer of the full-factorial design. The hybrid model trained on data from the iDoE describes the biomass and product at each time point for the full-factorial design with high and adequate accuracy. The fractional-factorial hybrid model demonstrates inferior accuracy and precision compared to the intensified approach. Moreover, the intensified hybrid model only required one-third of the data for model training compared to the full-factorial description, resulting in a reduced experimental effort of >66%. Thus, this combinatorial approach has the potential to accelerate bioprocess characterization.
在生物医药行业中,工艺表征是必要的,由此产生了实验设计(DoE)与工艺建模相结合的概念。然而,这些方法仍然存在一些缺点,包括需要进行大量的实验。本文提出了强化实验设计(iDoE)的概念,即在实验过程中对关键工艺参数(CPP)进行内部调整,与混合建模相结合,以更快速地筛选特定的设计空间。为了展示这些优势,本文介绍了一种用于生产重组人超氧化物歧化酶的大肠杆菌(E. coli)分批补料培养(20 L)的综合实验设计。评估了在没有实验内变化的情况下,基于 iDoE 和部分因子设计训练的混合模型的准确性,以同时预测全因子设计的生物量浓度和产物滴度。基于 iDoE 数据训练的混合模型以较高的准确性和足够的精度描述了全因子设计中每个时间点的生物量和产物。与强化方法相比,部分因子混合模型的准确性和精度较差。此外,与全因子描述相比,强化混合模型仅需要其三分之一的数据进行模型训练,从而减少了 >66%的实验工作量。因此,这种组合方法有可能加速生物工艺的表征。