Suppr超能文献

用于生物工艺开发的自举聚合混合半参数建模框架。

A bootstrap-aggregated hybrid semi-parametric modeling framework for bioprocess development.

机构信息

REQUIMTE/DQ, Faculty of Science and Technology, University Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.

CEAM, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

出版信息

Bioprocess Biosyst Eng. 2019 Nov;42(11):1853-1865. doi: 10.1007/s00449-019-02181-y. Epub 2019 Aug 2.

Abstract

Hybrid semi-parametric modeling, combining mechanistic and machine-learning methods, has proven to be a powerful method for process development. This paper proposes bootstrap aggregation to increase the predictive power of hybrid semi-parametric models when the process data are obtained by statistical design of experiments. A fed-batch Escherichia coli optimization problem is addressed, in which three factors (biomass growth setpoint, temperature, and biomass concentration at induction) were designed statistically to identify optimal cell growth and recombinant protein expression conditions. Synthetic data sets were generated applying three distinct design methods, namely, Box-Behnken, central composite, and Doehlert design. Bootstrap-aggregated hybrid models were developed for the three designs and compared against the respective non-aggregated versions. It is shown that bootstrap aggregation significantly decreases the prediction mean squared error of new batch experiments for all three designs. The number of (best) models to aggregate is a key calibration parameter that needs to be fine-tuned in each problem. The Doehlert design was slightly better than the other designs in the identification of the process optimum. Finally, the availability of several predictions allowed computing error bounds for the different parts of the model, which provides an additional insight into the variation of predictions within the model components.

摘要

混合半参数建模,结合了机理和机器学习方法,已被证明是一种用于工艺开发的强大方法。本文提出了自举聚合(Bootstrap Aggregation),以提高混合半参数模型在通过实验设计的统计过程数据获得时的预测能力。解决了分批补料大肠杆菌优化问题,其中三个因素(生物量生长设定点、温度和诱导时的生物量浓度)通过统计设计来确定最佳细胞生长和重组蛋白表达条件。应用三种不同的设计方法(Box-Behnken、中心复合和 Doehlert 设计)生成了合成数据集。为这三种设计开发了自举聚合混合模型,并与各自的非聚合版本进行了比较。结果表明,对于所有三种设计,自举聚合显著降低了新批次实验的预测均方误差。聚合的(最佳)模型数量是每个问题都需要微调的关键校准参数。在确定工艺最优值方面,Doehlert 设计略优于其他设计。最后,多个预测的可用性允许计算模型不同部分的误差界限,这为模型组件内预测的变化提供了额外的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验