Suppr超能文献

一种用于预测重症急性胰腺炎死亡率的新型简易评分系统:一项回顾性临床研究。

A simple new scoring system for predicting the mortality of severe acute pancreatitis: A retrospective clinical study.

作者信息

Wang Lei, Zeng Yan-Bo, Chen Jia-Yun, Luo Qian, Wang Rowan, Zhang Ruijie, Zheng Daniel, Dong Yuan-Hang, Zou Wen-Bin, Xie Xiaoqing, Du Yi-Qi, Li Zhao-Shen

机构信息

Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University.

Shanghai Institute of Pancreatic Diseases, Shanghai, China.

出版信息

Medicine (Baltimore). 2020 Jun 5;99(23):e20646. doi: 10.1097/MD.0000000000020646.

Abstract

It is critical to accurately identify patients with severe acute pancreatitis (SAP) in a timely manner. This study aimed to develop a new simplified AP scoring system based on data from Chinese population.We retrospectively analyzed a consecutive series of 585 patients diagnosed with SAP at the Changhai hospital between 2009 and 2017. The new Chinese simple scoring system (CSSS) was derived using logistic regression analysis and was validated in comparison to 4 existing systems using receiver operating characteristic curves.Six variables were selected for incorporation into CSSS, including serum creatinine, blood glucose, lactate dehydrogenase, heart rate, C-reactive protein, and extent of pancreatic necrosis. The new CSSS yields a maximum total score of 9 points. The cut-offs for predicting mortality and severity (discriminating moderately SAP from SAP) were set as 6 points and 4 points respectively. Compared with 4 existing scoring systems, the area under the receiver operating characteristic of CSSS for prediction of mortality was 0.838, similar to acute physiology and chronic health evaluation II (0.844) and higher than Ranson's score (0.702, P < .001), bedside index of severity in acute pancreatitis (0.615), and modified computed tomography severity index (MCTSI) (0.736). For predicting SAP severity, CSSS was the most accurate (0.834), followed by acute physiology and chronic health evaluation II (0.800), Ranson's score (0.702), MCTSI (0.660), and bedside index of severity in acute pancreatitis (0.570). Further, the accuracy of predicting pancreatic infection with CSSS was the highest (0.634), similar to that of MCTSI (0.641).A new prognostic scoring system for SAP was derived and validated in a Chinese sample. This scoring system is a simple and accurate method for prediction of mortality.

摘要

及时准确识别重症急性胰腺炎(SAP)患者至关重要。本研究旨在基于中国人群数据开发一种新的简化急性胰腺炎评分系统。我们回顾性分析了2009年至2017年期间在长海医院连续诊断为SAP的585例患者。新的中国简易评分系统(CSSS)通过逻辑回归分析得出,并与4种现有系统进行比较,利用受试者工作特征曲线进行验证。六个变量被选入CSSS,包括血清肌酐、血糖、乳酸脱氢酶、心率、C反应蛋白和胰腺坏死范围。新的CSSS最高总分为9分。预测死亡率和严重程度(区分中度SAP与SAP)的临界值分别设定为6分和4分。与4种现有评分系统相比,CSSS预测死亡率的受试者工作特征曲线下面积为0.838,与急性生理与慢性健康状况评分II(0.844)相似,高于兰森评分(0.702,P<0.001)、急性胰腺炎严重程度床边指数(0.615)和改良计算机断层扫描严重程度指数(MCTSI)(0.736)。对于预测SAP严重程度,CSSS最准确(0.834),其次是急性生理与慢性健康状况评分II(0.800)、兰森评分(0.702)、MCTSI(0.660)和急性胰腺炎严重程度床边指数(0.570)。此外,CSSS预测胰腺感染的准确性最高(0.634),与MCTSI(0.641)相似。一种新的SAP预后评分系统在中国样本中得出并得到验证。该评分系统是预测死亡率的一种简单准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0bc/7306337/2722d3f505fd/medi-99-e20646-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验