Suppr超能文献

生物认知分类学:无解释性简化主义的反社会个体

Biocognitive Classification of Antisocial Individuals Without Explanatory Reductionism.

机构信息

Project Responding to Antisocial Personalities in a Democratic Society (RAD), Department of Philosophy, Faculty of Humanities and Social Sciences in Rijeka, University of Rijeka.

Donders Institute for Brain, Cognition and Behaviour, Radboud University.

出版信息

Perspect Psychol Sci. 2020 Jul;15(4):957-972. doi: 10.1177/1745691620904160. Epub 2020 Jun 5.

Abstract

Effective and specifically targeted social and therapeutic responses for antisocial personality disorders and psychopathy are scarce. Some authors maintain that this scarcity should be overcome by revising current syndrome-based classifications of these conditions and devising better biocognitive classifications of antisocial individuals. The inspiration for the latter classifications has been embedded in the Research Domain Criteria (RDoC) approach. RDoC-type approaches to psychiatric research aim at transforming diagnosis, provide valid measures of disorders, aid clinical practice, and improve health outcomes by integrating the data on the genetic, neural, cognitive, and affective systems underlying psychiatric conditions. In the first part of the article, we discuss the benefits of such approaches compared with the dominant syndrome-based approaches and review recent attempts at building biocognitive classifications of antisocial individuals. Other researchers, however, have objected that biocognitive approaches in psychiatry are committed to an untenable form of explanatory reductionism. Explanatory reductionism is the view that psychological disorders can be exclusively categorized and explained in terms of their biological causes. In the second part of the article, we argue that RDoC-like approaches need not be associated with explanatory reductionism. Moreover, we argue how this is the case for a specific biocognitive approach to classifying antisocial individuals.

摘要

针对反社会人格障碍和精神病态的有效且针对性强的社会和治疗对策十分匮乏。一些作者认为,应该通过修订当前基于综合征的这些病症分类,并制定更好的反社会个体的生物认知分类来克服这种匮乏。后者的分类灵感来自于研究领域标准(RDoC)方法。RDoC 型精神科研究方法旨在通过整合与精神状况相关的遗传、神经、认知和情感系统的数据,来改变诊断、提供疾病的有效衡量标准、辅助临床实践并改善健康结果。在本文的第一部分,我们讨论了这些方法与占主导地位的基于综合征的方法相比的优势,并回顾了最近构建反社会个体的生物认知分类的尝试。然而,其他研究人员反对说,精神病学中的生物认知方法致力于一种站不住脚的解释还原论。解释还原论是指心理障碍可以完全根据其生物学原因进行分类和解释。在本文的第二部分,我们认为 RDoC 类似的方法不一定与解释还原论有关。此外,我们还论证了这种方法如何适用于特定的反社会个体的生物认知分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验