Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
J Mol Biol. 2020 Jul 24;432(16):4447-4465. doi: 10.1016/j.jmb.2020.05.022. Epub 2020 Jun 2.
The mammalian prion protein (PrP) engages with the ribosome-Sec61 translocation channel complex to generate different topological variants that are either physiological, or involved in neurodegenerative diseases. Here, we describe cotranslational folding and translocation mechanisms of PrP coupled to an Xbp1-based arrest peptide as folding sensor, to measure forces acting on PrP nascent chain. Our data reveal two main pulling events followed by a minor third one exerted on the nascent chains during their translocation. Using those force landscapes, we show that a specific sequence within an intrinsically disordered region, containing a polybasic and glycine-proline rich residues, modulates the second pulling event by interacting with TRAP complex. This work also delineates the sequence of events involved in generation of PrP toxic transmembrane topologies during its synthesis. Our results shed new insight into the folding of such a topological complex protein, where marginal pulling by the signal sequence, together with the flanking downstream sequence in the mature domain, primarily drives an overall inefficient translocation resulting in the nascent chain to adopt alternative topologies.
哺乳动物朊病毒蛋白(PrP)与核糖体- Sec61 易位通道复合物相互作用,产生不同的拓扑变体,这些变体要么是生理性的,要么与神经退行性疾病有关。在这里,我们描述了 PrP 与基于 Xbp1 的阻滞肽的共翻译折叠和易位机制,作为折叠传感器,以测量作用在 PrP 新生链上的力。我们的数据揭示了在它们易位过程中,新生链上施加的两个主要牵拉事件,随后是一个较小的第三个牵拉事件。使用这些力景观,我们表明,富含多碱性和甘氨酸-脯氨酸残基的无规卷曲区域内的特定序列通过与 TRAP 复合物相互作用来调节第二个牵拉事件。这项工作还描绘了在其合成过程中产生 PrP 毒性跨膜拓扑结构的事件序列。我们的结果为这种拓扑复杂蛋白的折叠提供了新的见解,其中信号序列的微小牵拉,以及成熟结构域中侧翼的下游序列,主要驱动整体低效的易位,导致新生链采用替代拓扑结构。