Institute for Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland.
Redox Biol. 2020 Jul;34:101576. doi: 10.1016/j.redox.2020.101576. Epub 2020 May 19.
Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.
血脑屏障(BBB)损伤明显加速了脑部疾病的进展。由于预防损伤引起的屏障功能障碍的方法仍难以捉摸,因此需要更好地了解 BBB 细胞如何相互作用并调节屏障完整性。我们的代谢组学分析研究表明,细胞对损伤的特异性适应与 BBB 的代谢重编程密切相关。特别是,我们注意到原代星形胶质细胞(AC)中与谷胱甘肽(GSH)相关的代谢物水平相对较高,而原代内皮细胞(EC)中则较低。损伤显著扰乱了 EC 中的氧化还原平衡,但对 AC 没有影响,这促使我们评估 1)AC-EC GSH 穿梭是否支持屏障稳定性,以及 2)GSH 对 EC 功能的影响。我们使用同位素标记/追踪方法结合飞行时间质谱(TOF-MS)证明,即使在静息状态下,AC 也会不断将 GSH 穿梭到 EC 中-这种通量在体外损伤条件下会加速。相关的共培养研究表明,通过 siRNA 介导的γ-谷氨酰半胱氨酸连接酶(GCL)敲低阻断 AC GSH 的产生和分泌,会显著损害 EC 屏障的完整性。通过使用不同的 GSH 供体,我们进一步表明,外源性 GSH 补充通过维持紧密连接蛋白的组织和防止损伤诱导的紧密连接磷酸化,改善了屏障功能。因此,AC GSH 穿梭是维持 EC 氧化还原平衡和 BBB 稳定性的关键,这表明 GSH 补充可能改善脑损伤后的恢复。