Suppr超能文献

与 NEWS、Between the Flags 和 eCART 轨迹和触发工具相比,使用 Q-ADDS 预测临床恶化。

Predicting clinical deterioration with Q-ADDS compared to NEWS, Between the Flags, and eCART track and trigger tools.

机构信息

Intensive Care Unit, Sunshine Coast University Hospital, Queensland, Australia.

Deteriorating Patient Response, Sunshine Coast University Hospital, Queensland, Australia.

出版信息

Resuscitation. 2020 Aug;153:28-34. doi: 10.1016/j.resuscitation.2020.05.027. Epub 2020 Jun 3.

Abstract

BACKGROUND

Early warning tools have been widely implemented without evidence to guide (a) recognition and (b) response team expertise optimisation. With growing databases from MET-calls and digital hospitals, we now have access to guiding information. The Queensland Adult-Deterioration-Detection-System (Q-ADDS) is widely used and requires validation.

AIM

Compare the accuracy of Q-ADDS to National Early Warning Score (NEWS), Between-the-Flags (BTF) and the electronic Cardiac Arrest Risk Triage Score (eCART)).

METHODS

Data from the Chicago University hospital database were used. Clinical deterioration was defined as unplanned admission to ICU or death. Currently used NEWS, BTF and eCART trigger thresholds were compared with a clinically endorsed Q-ADDS variant.

RESULTS

Of 224,912 admissions, 11,706 (5%) experienced clinical deterioration. Q-ADDS (AUC 0.71) and NEWS (AUC 0.72) had similar predictive accuracy, BTF (AUC 0.64) had the lowest, and eCART (AUC 0.76) the highest. Early warning alert (advising ward MO review) had similar NPV (99.2-99.3%), for all the four tools however sensitivity varied (%: Q-ADDS = 47/NEWS = 49/BTF = 66/eCART = 40), as did alerting rate (% vitals sets: Q-ADDS = 1.4/NEWS = 3.5/BTF = 4.1/eCART = 3.4). MET alert (advising MET/critical-care review) had similar NPV for all the four tools (99.1-99.2%), however sensitivity varied (%: Q-ADDS = 14/NEWS = 24/BTF = 19/eCART = 29), as did MET alerting rate (%: Q-ADDS = 1.4/NEWS = 3.5/BTF = 4.1/eCART = 3.4). High-severity alert (advising advanced ward review, Q-ADDS only): NPV = 99.1%, sensitivity = 26%, alerting rate = 3.5%.

CONCLUSION

The accuracy of Q-ADDS is comparable to NEWS, and higher than BTF, with eCART being the most accurate. Q-ADDS provides an additional high-severity ward alert, and generated significantly fewer MET alerts. Impacts of increased ward awareness and fewer MET alerts on actual MET call numbers and patient outcomes requires further evaluation.

摘要

背景

早期预警工具已经得到广泛应用,但缺乏指导(a)识别和(b)响应团队专业知识优化的证据。随着 MET 呼叫和数字医院数据库的不断增长,我们现在可以获得指导信息。昆士兰成人恶化检测系统(Q-ADDS)应用广泛,需要验证。

目的

比较 Q-ADDS 与国家早期预警评分(NEWS)、Flag 之间(BTF)和电子心脏骤停风险分诊评分(eCART)的准确性。

方法

使用芝加哥大学医院数据库的数据。临床恶化定义为计划外转入 ICU 或死亡。目前使用的 NEWS、BTF 和 eCART 触发阈值与临床认可的 Q-ADDS 变体进行了比较。

结果

在 224912 例入院患者中,有 11706 例(5%)发生临床恶化。Q-ADDS(AUC 0.71)和 NEWS(AUC 0.72)具有相似的预测准确性,BTF(AUC 0.64)最低,eCART(AUC 0.76)最高。早期预警警报(建议病房 MO 复查)具有相似的阴性预测值(99.2-99.3%),所有四种工具的敏感性不同(%:Q-ADDS=47/NEWS=49/BTF=66/eCART=40),警报率也不同(%生命体征设置:Q-ADDS=1.4/NEWS=3.5/BTF=4.1/eCART=3.4)。MET 警报(建议 MET/危重病复查)对所有四种工具均具有相似的阴性预测值(99.1-99.2%),但敏感性不同(%:Q-ADDS=14/NEWS=24/BTF=19/eCART=29),MET 警报率也不同(%:Q-ADDS=1.4/NEWS=3.5/BTF=4.1/eCART=3.4)。高严重度警报(建议高级病房复查,仅限 Q-ADDS):阴性预测值=99.1%,敏感性=26%,警报率=3.5%。

结论

Q-ADDS 的准确性可与 NEWS 相媲美,且高于 BTF,而 eCART 则更准确。Q-ADDS 提供了一个额外的高严重度病房警报,并且生成的 MET 警报明显更少。增加病房意识和减少 MET 警报对实际 MET 呼叫次数和患者结局的影响需要进一步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15ad/7896199/a36616edada7/nihms-1655651-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验