Loos Pierre-François, Fromager Emmanuel
Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.
Laboratoire de Chimie Quantique, Institut de Chimie, CNRS, Université de Strasbourg, Strasbourg, France.
J Chem Phys. 2020 Jun 7;152(21):214101. doi: 10.1063/5.0007388.
We report a local, weight-dependent correlation density-functional approximation that incorporates information about both ground and excited states in the context of density functional theory for ensembles (eDFT). This density-functional approximation for ensembles is specially designed for the computation of single and double excitations within Gross-Oliveira-Kohn DFT (i.e., eDFT for neutral excitations) and can be seen as a natural extension of the ubiquitous local-density approximation in the context of ensembles. The resulting density-functional approximation, based on both finite and infinite uniform electron gas models, automatically incorporates the infamous derivative discontinuity contributions to the excitation energies through its explicit ensemble weight dependence. Its accuracy is illustrated by computing single and double excitations in one-dimensional (1D) many-electron systems in the weak, intermediate, and strong correlation regimes. Although the present weight-dependent functional has been specifically designed for 1D systems, the methodology proposed here is general, i.e., directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids.
我们报告了一种局部的、与权重相关的关联密度泛函近似,它在系综密度泛函理论(eDFT)的背景下纳入了基态和激发态的信息。这种系综密度泛函近似是专门为在格罗斯 - 奥利维拉 - 科恩密度泛函理论(即中性激发的eDFT)中计算单激发和双激发而设计的,并且可以被视为系综背景下普遍存在的局域密度近似的自然扩展。基于有限和无限均匀电子气模型得到的密度泛函近似,通过其明确的系综权重依赖性,自动纳入了对激发能臭名昭著的导数不连续性贡献。通过计算一维(1D)多电子系统在弱、中和强关联区域的单激发和双激发,说明了其准确性。尽管目前的权重依赖泛函是专门为一维系统设计的,但这里提出的方法是通用的,即直接适用于构建适用于真实三维系统(如分子和固体)的权重依赖泛函。