Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
J Chem Phys. 2019 Mar 7;150(9):094106. doi: 10.1063/1.5084312.
Gross-Oliveira-Kohn density-functional theory (GOK-DFT) for ensembles is the DFT analog of state-averaged wavefunction-based (SA-WF) methods. In GOK-DFT, the SA (so-called ensemble) exchange-correlation (xc) energy is described by a single functional of the density which, for a fixed density, depends on the weights assigned to each state in the ensemble. We show that if a many-weight-dependent xc functional is employed, then it becomes possible to extract, in principle exactly, all individual energy levels from a single GOK-DFT calculation, exactly like in a SA-WF calculation. More precisely, starting from the Kohn-Sham energies, a global Levy-Zahariev-type shift as well as a state-specific (ensemble-based) xc derivative correction must be applied in order to reach the energy level of interest. We illustrate with the asymmetric Hubbard dimer the importance and substantial weight dependence of both corrections. A comparison with more standard extraction procedures, which rely on a sequence of ensemble calculations, is made at the ensemble exact exchange level of approximation.
Gross-Oliveira-Kohn 密度泛函理论(GOK-DFT)用于系综是基于状态平均波函数(SA-WF)方法的密度泛函理论的模拟。在 GOK-DFT 中,SA(所谓的系综)交换关联(xc)能量由密度的单个泛函描述,对于固定的密度,该泛函取决于系综中分配给每个状态的权重。我们表明,如果采用许多权重相关的 xc 泛函,则从单个 GOK-DFT 计算中提取所有单个能级在原则上是可能的,就像在 SA-WF 计算中一样。更准确地说,从 Kohn-Sham 能量开始,必须应用全局 Levy-Zahariev 类型的位移以及特定于状态的(基于系综的)xc 导数校正,以达到感兴趣的能级。我们用不对称 Hubbard 二聚体说明了这两种校正的重要性和实质性的权重依赖性。在系综精确交换近似的水平上,与更标准的提取程序(依赖于一系列系综计算)进行了比较。