IMT Atlantique, LaTIM UMR 1101, UBL, Technopôle Brest-Iroise, 29238 Brest, France; Inserm, LaTIM UMR 1101, IBRBS, 22 rue Camille Desmoulins, 29238 Brest, France.
Inserm, LaTIM UMR 1101, IBRBS, 22 rue Camille Desmoulins, 29238 Brest, France; Rehabilitation Medicine, University Hospital of Brest, 2 avenue Foch, 29200 Brest, France; SSR pediatric, Fondation ILDYS, Ty Yann, rue Alain Colas, 29218 Brest, France.
Comput Med Imaging Graph. 2020 Jul;83:101733. doi: 10.1016/j.compmedimag.2020.101733. Epub 2020 May 6.
Fully-automated segmentation of pathological shoulder muscles in patients with musculo-skeletal diseases is a challenging task due to the huge variability in muscle shape, size, location, texture and injury. A reliable automatic segmentation method from magnetic resonance images could greatly help clinicians to diagnose pathologies, plan therapeutic interventions and predict interventional outcomes while eliminating time consuming manual segmentation. The purpose of this work is three-fold. First, we investigate the feasibility of automatic pathological shoulder muscle segmentation using deep learning techniques, given a very limited amount of available annotated pediatric data. Second, we address the learning transferability from healthy to pathological data by comparing different learning schemes in terms of model generalizability. Third, extended versions of deep convolutional encoder-decoder architectures using encoders pre-trained on non-medical data are proposed to improve the segmentation accuracy. Methodological aspects are evaluated in a leave-one-out fashion on a dataset of 24 shoulder examinations from patients with unilateral obstetrical brachial plexus palsy and focus on 4 rotator cuff muscles (deltoid, infraspinatus, supraspinatus and subscapularis). The most accurate segmentation model is partially pre-trained on the large-scale ImageNet dataset and jointly exploits inter-patient healthy and pathological annotated data. Its performance reaches Dice scores of 82.4%, 82.0%, 71.0% and 82.8% for deltoid, infraspinatus, supraspinatus and subscapularis muscles. Absolute surface estimation errors are all below 83 mm except for supraspinatus with 134.6 mm. The contributions of our work offer new avenues for inferring force from muscle volume in the context of musculo-skeletal disorder management.
骨骼肌疾病患者的病理性肩部肌肉全自动分割是一项具有挑战性的任务,因为肌肉形状、大小、位置、纹理和损伤存在巨大差异。一种可靠的磁共振图像自动分割方法可以极大地帮助临床医生诊断疾病、规划治疗干预措施和预测干预效果,同时消除耗时的手动分割。这项工作有三个目的。首先,我们研究了在可用的小儿标注数据非常有限的情况下,使用深度学习技术进行病理性肩部肌肉自动分割的可行性。其次,我们通过比较不同学习方案在模型通用性方面的差异,探讨了从健康数据到病理数据的学习迁移能力。第三,提出了使用非医学数据预训练的编码器的扩展深度卷积编解码器架构,以提高分割准确性。方法学方面在 24 例单侧产瘫患者肩部检查的数据集上进行了留一法评估,重点关注 4 个肩袖肌肉(三角肌、冈下肌、冈上肌和肩胛下肌)。最准确的分割模型部分预训练于大规模的 ImageNet 数据集,并联合利用患者间健康和病理标注数据。其性能达到三角肌、冈下肌、冈上肌和肩胛下肌的 Dice 评分分别为 82.4%、82.0%、71.0%和 82.8%。绝对表面估计误差均低于 83mm,除了冈上肌为 134.6mm。我们工作的贡献为在肌肉骨骼疾病管理背景下从肌肉体积推断力提供了新的途径。