Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts.
Genet Epidemiol. 2020 Sep;44(6):564-578. doi: 10.1002/gepi.22323. Epub 2020 Jun 7.
There are numerous statistical models used to identify individuals at high risk of cancer due to inherited mutations. Mendelian models predict future risk of cancer by using family history with estimated cancer penetrances (age- and sex-specific risk of cancer given the genotype of the mutations) and mutation prevalences. However, there is often residual risk heterogeneity across families even after accounting for the mutations in the model, due to environmental or unobserved genetic risk factors. We aim to improve Mendelian risk prediction by incorporating a frailty model that contains a family-specific frailty vector, impacting the cancer hazard function, to account for this heterogeneity. We use a discrete uniform population frailty distribution and implement a marginalized approach that averages each family's risk predictions over the family's frailty distribution. We apply the proposed approach to improve breast cancer prediction in BRCAPRO, a Mendelian model that accounts for inherited mutations in the BRCA1 and BRCA2 genes to predict breast and ovarian cancer. We evaluate the proposed model's performance in simulations and real data from the Cancer Genetics Network and show improvements in model calibration and discrimination. We also discuss alternative approaches for incorporating frailties and their strengths and limitations.
有许多统计模型用于识别因遗传突变而患癌症风险较高的个体。孟德尔模型通过使用家族史和估计的癌症外显率(给定突变基因型的年龄和性别特异性癌症风险)以及突变流行率来预测未来的癌症风险。然而,即使在模型中考虑了突变,由于环境或未观察到的遗传风险因素,家族之间仍然存在残余风险异质性。我们旨在通过纳入脆弱性模型来改进孟德尔风险预测,该模型包含特定于家庭的脆弱性向量,影响癌症危害函数,以解释这种异质性。我们使用离散均匀人口脆弱性分布并实现了一种边缘化方法,该方法在家庭脆弱性分布上平均每个家庭的风险预测。我们将提出的方法应用于改进 BRCAPro 中的乳腺癌预测,BRCAPro 是一种孟德尔模型,用于预测乳腺癌和卵巢癌,该模型考虑了 BRCA1 和 BRCA2 基因中的遗传突变。我们在模拟和癌症遗传学网络的真实数据中评估了所提出模型的性能,并显示了模型校准和区分能力的提高。我们还讨论了纳入脆弱性的替代方法及其优缺点。