Suppr超能文献

变异特异性孟德尔风险预测模型。

Variant-specific Mendelian Risk Prediction Model.

作者信息

Bae Eunchan, Dias Julie-Alexia, Huang Theodore, Chen Jinbo, Parmigiani Giovanni, Rebbeck Timothy R, Braun Danielle

出版信息

bioRxiv. 2023 Mar 8:2023.03.06.531363. doi: 10.1101/2023.03.06.531363.

Abstract

Many pathogenic sequence variants (PSVs) have been associated with increased risk of cancers. Mendelian risk prediction models use Mendelian laws of inheritance to predict the probability of having a PSV based on family history, as well as specified PSV frequency and penetrance (agespecific probability of developing cancer given genotype). Most existing models assume penetrance is the same for any PSVs in a certain gene. However, for some genes (for example, BRCA1/2), cancer risk does vary by PSV. We propose an extension of Mendelian risk prediction models to relax the assumption that risk is the same for any PSVs in a certain gene by incorporating variant-specific penetrances and illustrating these extensions on two existing Mendelian risk prediction models, BRCAPRO and PanelPRO. Our proposed BRCAPRO-variant and PanelPRO-variant models incorporate variant-specific BRCA1/2 PSVs through the region classifications. Due to the sparsity of the variant information we classify BRCA1/2 PSVs into three regions; the breast cancer clustering region (BCCR), the ovarian cancer clustering region (OCCR), and an other region. Simulations were conducted to evaluate the performance of the proposed BRCAPRO-variant model compared to the existing BRCAPRO model which assumes the penetrance is the same for any PSVs in BRCA1 (and respectively BRCA2). Simulation results showed that the BRCAPRO-variant model was well calibrated to predict region-specific BRCA1/2 carrier status with high discrimination and accuracy on the region-specific level. In addition, we showed that the BRCAPRO-variant model achieved performance gains over the existing risk prediction models in terms of calibration without loss in discrimination and accuracy. We also evaluated the performance of the two proposed models, BRCAPRO-variant and PanelPRO-variant, on a cohort of 1,961 families from the Cancer Genetics Network (CGN). We showed that our proposed models provide region-specific PSV carrier probabilities with high accuracy, while the calibration, discrimination and accuracy of gene-specific PSV carrier probabilities were comparable to the existing gene-specific models. As more variant-specific PSV penetrances become available, we have shown that Mendelian risk prediction models can be extended to integrate the additional information, providing precise variant or region-specific PSV carrier probabilities and improving future cancer risk predictions.

摘要

许多致病性序列变异(PSV)与癌症风险增加相关。孟德尔风险预测模型利用孟德尔遗传定律,根据家族病史以及特定的PSV频率和外显率(给定基因型下患癌的年龄特异性概率)来预测携带PSV的概率。大多数现有模型假定某一基因中的任何PSV的外显率相同。然而,对于某些基因(例如,BRCA1/2),癌症风险会因PSV而异。我们提出了一种孟德尔风险预测模型的扩展方法,通过纳入变异特异性外显率,并在两个现有的孟德尔风险预测模型BRCAPRO和PanelPRO上说明这些扩展,从而放宽某一基因中任何PSV风险相同的假设。我们提出的BRCAPRO-变异模型和PanelPRO-变异模型通过区域分类纳入变异特异性BRCA1/2 PSV。由于变异信息的稀疏性,我们将BRCA1/2 PSV分为三个区域;乳腺癌聚集区域(BCCR)、卵巢癌聚集区域(OCCR)和其他区域。进行了模拟,以评估我们提出的BRCAPRO-变异模型与现有的BRCAPRO模型相比的性能,现有BRCAPRO模型假定BRCA1(以及分别针对BRCA2)中任何PSV的外显率相同。模拟结果表明,BRCAPRO-变异模型经过良好校准,能够在区域特异性水平上以高区分度和准确性预测区域特异性BRCA1/2携带者状态。此外,我们表明,BRCAPRO-变异模型在校准方面比现有的风险预测模型有性能提升,同时在区分度和准确性方面没有损失。我们还在来自癌症遗传网络(CGN)的1961个家庭的队列中评估了我们提出的两个模型BRCAPRO-变异模型和PanelPRO-变异模型的性能。我们表明,我们提出的模型能够高精度地提供区域特异性PSV携带者概率,而基因特异性PSV携带者概率的校准、区分度和准确性与现有的基因特异性模型相当。随着更多变异特异性PSV外显率信息的可得,我们已经表明孟德尔风险预测模型可以扩展以整合这些额外信息,提供精确的变异或区域特异性PSV携带者概率,并改善未来的癌症风险预测。

相似文献

1
Variant-specific Mendelian Risk Prediction Model.变异特异性孟德尔风险预测模型。
bioRxiv. 2023 Mar 8:2023.03.06.531363. doi: 10.1101/2023.03.06.531363.
10
Combining Breast Cancer Risk Prediction Models.联合乳腺癌风险预测模型
Cancers (Basel). 2023 Feb 8;15(4):1090. doi: 10.3390/cancers15041090.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验