Suppr超能文献

携带者概率估计中的多种疾病:BRCAPRO中除乳腺癌和卵巢癌外其他所有癌症幸存者的考量。

Multiple diseases in carrier probability estimation: accounting for surviving all cancers other than breast and ovary in BRCAPRO.

作者信息

Katki Hormuzd A, Blackford Amanda, Chen Sining, Parmigiani Giovanni

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD 20852-4910, USA.

出版信息

Stat Med. 2008 Sep 30;27(22):4532-48. doi: 10.1002/sim.3302.

Abstract

Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 families from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO's concordance index from 0.758 to 0.762 (p=0.046), improves its positive predictive value from 35 to 39 per cent (p<10(-6)) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability<10 per cent.

摘要

孟德尔模型可以根据家族病史预测谁携带已知疾病基因的遗传性有害突变。例如,BRCAPRO模型通常用于根据家族性乳腺癌和卵巢癌来识别携带BRCA1和BRCA2突变的家族。这些模型纳入了亲属疾病的诊断年龄以及当前年龄或死亡年龄。我们为处理带有删失值的多种疾病建立了一个严谨的基础。我们证明,任何与突变无关的疾病都可以从模型中排除,除非它足够常见且依赖于与突变相关的疾病时间。此外,如果家庭成员在突变携带者中患某种疾病的概率密度更高,但模型未考虑到这一点,那么携带者概率就会被低估。然而,即使一个家族只有模型所考虑的疾病,但如果模型排除了一种与突变相关的疾病,那么携带者概率就会被高估。鉴于这些结果,我们扩展了BRCAPRO,将存活于所有非乳腺癌/卵巢癌作为一个单一结果来考虑。这种扩展还使BRCAPRO能够从男性亲属中提取更多有用信息。使用癌症遗传网络的1500个家族数据,考虑存活于其他癌症的情况后,BRCAPRO的一致性指数从0.758提高到0.762(p = 0.046),阳性预测值从35%提高到39%(p < 10⁻⁶),且不影响其阴性预测值,并改善了其整体校准情况,不过对于携带者概率<10%的人群,校准情况略有恶化。

相似文献

引用本文的文献

3
A Pragmatic Testing-Eligibility Framework for Population Mutation Screening: The Example of .用于人群突变筛选的实用测试资格框架:以. 为例。
Cancer Epidemiol Biomarkers Prev. 2019 Feb;28(2):293-302. doi: 10.1158/1055-9965.EPI-18-0584. Epub 2019 Jan 28.
4
Simpson's paradox in the integrated discrimination improvement.综合鉴别改善中的辛普森悖论。
Stat Med. 2017 Dec 10;36(28):4468-4481. doi: 10.1002/sim.6862. Epub 2016 Jan 5.
5
7
A two-stage approach to genetic risk assessment in primary care.基层医疗中遗传风险评估的两阶段方法。
Breast Cancer Res Treat. 2016 Jan;155(2):375-83. doi: 10.1007/s10549-016-3686-2. Epub 2016 Jan 19.
10
Calibrated predictions for multivariate competing risks models.多变量竞争风险模型的校准预测
Lifetime Data Anal. 2014 Apr;20(2):234-51. doi: 10.1007/s10985-013-9260-x. Epub 2013 May 31.

本文引用的文献

1
Validity of models for predicting BRCA1 and BRCA2 mutations.预测BRCA1和BRCA2基因突变模型的有效性。
Ann Intern Med. 2007 Oct 2;147(7):441-50. doi: 10.7326/0003-4819-147-7-200710020-00002.
2
Prostate cancer progression and survival in BRCA2 mutation carriers.携带BRCA2基因突变者的前列腺癌进展与生存情况
J Natl Cancer Inst. 2007 Jun 20;99(12):929-35. doi: 10.1093/jnci/djm005. Epub 2007 Jun 12.
6
BayesMendel: an R environment for Mendelian risk prediction.贝叶斯孟德尔:用于孟德尔风险预测的R环境。
Stat Appl Genet Mol Biol. 2004;3:Article21. doi: 10.2202/1544-6115.1063. Epub 2004 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验