State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Glob Chang Biol. 2020 Sep;26(9):5290-5302. doi: 10.1111/gcb.15205. Epub 2020 Jul 1.
It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.
有人提出,永久冻土融化可能会促进冻结氮(N)的释放,并改变微生物氮转化速率,这可能会改变土壤 N 的有效性,从而调节生态系统功能。然而,目前对这一问题的认识仅限于北极永久冻土地区的有限观测,而在其他永久冻土地区则没有进行任何系统的测量。本研究通过在 1000 公里的横断面上进行大规模野外调查和采用 N 库稀释方法的实验室培养实验,综合评估了青藏高原多年冻土区的多年冻土 N 状况,包括可用 N 含量和相关的 N 转化速率。与普遍观点相反,我们的研究结果表明,青藏高原多年冻土的可用 N 含量和净氮矿化率均低于活动层。此外,多年冻土的氮矿化、微生物固定化和硝化的总速率均低于活动层。我们的研究结果还表明,多年冻土和活动层中总氮矿化和微生物固定化速率的主要驱动因素不同,这些速率在多年冻土中由微生物特性决定,而在活动层中则由土壤湿度调节。相比之下,土壤总硝化速率在多年冻土和活动层中均受土壤温度的一致调节。总体而言,本研究中观察到的多年冻土 N 库和转化速率的模式和驱动因素为永久冻土融化后可能释放的 N 提供了新的见解,并为地球系统模型提供了重要线索,以更好地预测在气候变暖背景下永久冻土的生物地球化学循环。