Hernando Antonio, Galvez Fernando, García Miguel A, Soto-León Vanesa, Alonso-Bonilla Carlos, Aguilar Juan, Oliviero Antonio
Instituto Magnetismo Avanzad, Laboratorio Salvador Velayos, Universidad Complutense de Madrid-Consejo Superior Investigación Cientifica-Administrador Infraestructuras Ferroviarias, Madrid, Spain.
Instituto Madrileños de Estudios Avanzados Nanociencia, Madrid, Spain.
Front Neurosci. 2020 May 19;14:419. doi: 10.3389/fnins.2020.00419. eCollection 2020.
Static magnetic fields have been shown to induce effects on the human brain. Different experiments seem to support the idea that moderate static magnetic field can exert some influence on the gating processes of the membrane channels. In this article we visit the order of magnitude of the energy magnetic terms associated with moderate applied field (between 10 and 200 milliteslas). It is shown that gradients of the Zeeman energy associated with the inhomogeneous applied fields can induce pressures of the order of 10Pa. The surface tension generated by the magnetic pressure, on the surface delimiting the brain region subject to relevant field and gradients, is found to range between 10 and 1 mN⋅m. These pressures seem to be strong enough to interfere with the elastic and electrostatic energies involved in the channel activation-inactivation-deactivation mechanisms of biological membranes. It has been described that small mechanical force can activate voltage gated potassium channels. Moreover, stretch-activated ion channels are widely described in different biological tissues. Virtually, all these channels can modify their activity if stressed by a sufficient pressure delivered for enough time. We propose mechanical stimulation - possibly not exclusively - as a candidate mechanism how static magnetic field can produce effects in biological systems. It must be emphasized, that such field gradients were not previously proposed as a possible source of neural activity modification.
静磁场已被证明会对人脑产生影响。不同的实验似乎支持这样一种观点,即适度的静磁场会对膜通道的门控过程产生一些影响。在本文中,我们探讨了与适度施加的磁场(10至200毫特斯拉之间)相关的能量磁项的量级。结果表明,与非均匀施加的磁场相关的塞曼能量梯度可诱导出约10Pa量级的压力。在界定受相关磁场和梯度作用的脑区的表面上,由磁压力产生的表面张力在10至1 mN·m之间。这些压力似乎足以干扰生物膜通道激活 - 失活 - 去激活机制中涉及的弹性和静电能量。据描述,小的机械力可激活电压门控钾通道。此外,拉伸激活离子通道在不同生物组织中广泛存在。实际上,如果在足够长的时间内施加足够的压力使其受到应力作用,所有这些通道都可以改变其活性。我们提出机械刺激——可能并非唯一——作为静磁场如何在生物系统中产生效应的一种候选机制。必须强调的是,此前并未提出这样的场梯度是神经活动改变的可能来源。