Irace Zacharie, Mérida Inés, Redouté Jérôme, Fonteneau Clara, Suaud-Chagny Marie-Françoise, Brunelin Jérôme, Vidal Benjamin, Zimmer Luc, Reilhac Anthonin, Costes Nicolas
CERMEP-Life Imaging, Lyon, France.
SIEMENS Healthcare SAS, Saint Denis, France.
Front Physiol. 2020 May 19;11:498. doi: 10.3389/fphys.2020.00498. eCollection 2020.
This paper proposes an innovative method, named b-ntPET, for solving a competition model in PET. The model is built upon the state-of-the-art method called lp-ntPET. It consists in identifying the parameters of the PET kinetic model relative to a reference region that rule the steady state exchanges, together with the identification of four additional parameters defining a displacement curve caused by an endogenous neurotransmitter discharge, or by a competing injected drug targeting the same receptors as the PET tracer. The resolution process of lp-ntPET is however suboptimal due to the use of discretized basis functions, and is very sensitive to noise, limiting its sensitivity and accuracy. Contrary to the original method, our proposed resolution approach first estimates the probability distribution of the unknown parameters using Markov-Chain Monte-Carlo sampling, distributions from which the estimates are then inferred. In addition, and for increased robustness, the noise level is jointly estimated with the parameters of the model. Finally, the resolution is formulated in a Bayesian framework, allowing the introduction of prior knowledge on the parameters to guide the estimation process toward realistic solutions. The performance of our method was first assessed and compared head-to-head with the reference method lp-ntPET using well-controlled realistic simulated data. The results showed that the b-ntPET method is substantially more robust to noise and much more sensitive and accurate than lp-ntPET. We then applied the model to experimental animal data acquired in pharmacological challenge studies and human data with endogenous releases induced by transcranial direct current stimulation. In the drug challenge experiment on cats using [F]MPPF, a serotoninergic 1A antagonist radioligand, b-ntPET measured a dose response associated with the amount of the challenged injected concurrent 5-HT1A agonist, where lp-ntPET failed. In human [C]raclopride experiment, contrary to lp-ntPET, b-ntPET successfully detected significant endogenous dopamine releases induced by the stimulation. In conclusion, our results showed that the proposed method b-ntPET has similar performance to lp-ntPET for detecting displacements, but with higher resistance to noise and better robustness to various experimental contexts. These improvements lead to the possibility of detecting and characterizing dynamic drug occupancy from a single PET scan more efficiently.
本文提出了一种名为b-ntPET的创新方法,用于解决正电子发射断层扫描(PET)中的竞争模型。该模型基于名为lp-ntPET的最先进方法构建。它包括识别相对于参考区域的PET动力学模型参数,这些参数决定了稳态交换,同时识别另外四个参数,这些参数定义了由内源性神经递质释放或与PET示踪剂靶向相同受体的竞争性注射药物引起的位移曲线。然而,由于使用了离散化基函数,lp-ntPET的解析过程并不理想,并且对噪声非常敏感,限制了其灵敏度和准确性。与原始方法不同,我们提出的解析方法首先使用马尔可夫链蒙特卡罗采样估计未知参数的概率分布,然后从这些分布中推断估计值。此外,为了提高鲁棒性,噪声水平与模型参数一起联合估计。最后,解析过程在贝叶斯框架中进行,允许引入关于参数的先验知识,以指导估计过程朝着实际解决方案发展。我们首先使用控制良好的真实模拟数据评估了我们方法的性能,并与参考方法lp-ntPET进行了直接比较。结果表明,b-ntPET方法对噪声的鲁棒性更强,比lp-ntPET更灵敏、更准确。然后,我们将该模型应用于药理学激发研究中获取的实验动物数据以及经颅直流电刺激诱导内源性释放的人体数据。在使用5-羟色胺能1A拮抗剂放射性配体[F]MPPF对猫进行的药物激发实验中,b-ntPET测量到了与激发注射的同时使用的5-HT1A激动剂剂量相关的剂量反应,而lp-ntPET未能做到。在人体[C]雷氯必利实验中,与lp-ntPET不同,b-ntPET成功检测到了由刺激引起的显著内源性多巴胺释放。总之,我们的结果表明,所提出的b-ntPET方法在检测位移方面与lp-ntPET具有相似的性能,但对噪声具有更高的抗性,对各种实验环境具有更好的鲁棒性。这些改进使得更有效地从单次PET扫描中检测和表征动态药物占有率成为可能。