Suppr超能文献

通过酵母氨酸途径进行的赖氨酸分解代谢:参与植物对非生物和生物胁迫响应的酶及中间产物

Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress.

作者信息

Arruda Paulo, Barreto Pedro

机构信息

Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.

Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.

出版信息

Front Plant Sci. 2020 May 21;11:587. doi: 10.3389/fpls.2020.00587. eCollection 2020.

Abstract

The saccharopine pathway (SACPATH) involves the conversion of lysine into α-aminoadipate by three enzymatic reactions catalyzed by the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) and the enzyme α-aminoadipate semialdehyde dehydrogenase (AASADH). The LKR domain condenses lysine and α-ketoglutarate into saccharopine, and the SDH domain hydrolyzes saccharopine to form glutamate and α-aminoadipate semialdehyde, the latter of which is oxidized to α-aminoadipate by AASADH. Glutamate can give rise to proline by the action of the enzymes Δ-pyrroline-5-carboxylate synthetase (P5CS) and Δ-pyrroline-5-carboxylate reductase (P5CR), while Δ-piperideine-6-carboxylate the cyclic form of α-aminoadipate semialdehyde can be used by P5CR to produce pipecolate. The production of proline and pipecolate by the SACPATH can help plants face the damage caused by osmotic, drought, and salt stress. AASADH is a versatile enzyme that converts an array of aldehydes into carboxylates, and thus, its induction within the SACPATH would help alleviate the toxic effects of these compounds produced under stressful conditions. Pipecolate is the priming agent of N-hydroxypipecolate (NHP), the effector of systemic acquired resistance (SAR). In this review, lysine catabolism through the SACPATH is discussed in the context of abiotic stress and its potential role in the induction of the biotic stress response.

摘要

酵母氨酸途径(SACPATH)涉及通过双功能酶赖氨酸 - 酮戊二酸还原酶/酵母氨酸脱氢酶(LKR/SDH)和α - 氨基己二酸半醛脱氢酶(AASADH)催化的三个酶促反应将赖氨酸转化为α - 氨基己二酸。LKR结构域将赖氨酸和α - 酮戊二酸缩合形成酵母氨酸,SDH结构域水解酵母氨酸形成谷氨酸和α - 氨基己二酸半醛,后者被AASADH氧化为α - 氨基己二酸。谷氨酸可通过Δ - 吡咯啉 - 5 - 羧酸合成酶(P5CS)和Δ - 吡咯啉 - 5 - 羧酸还原酶(P5CR)的作用产生脯氨酸,而α - 氨基己二酸半醛的环状形式Δ - 哌啶 - 6 - 羧酸可被P5CR用于产生哌啶酸。SACPATH产生脯氨酸和哌啶酸有助于植物应对渗透、干旱和盐胁迫造成的损害。AASADH是一种多功能酶,可将一系列醛转化为羧酸盐,因此,其在SACPATH中的诱导将有助于减轻在胁迫条件下产生的这些化合物的毒性作用。哌啶酸是N - 羟基哌啶酸(NHP)的引发剂,NHP是系统获得性抗性(SAR)的效应子。在这篇综述中,将在非生物胁迫的背景下讨论通过SACPATH进行的赖氨酸分解代谢及其在诱导生物胁迫反应中的潜在作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4462/7253579/b46db1af5c5e/fpls-11-00587-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验