Suppr超能文献

使用基于多特征和多序列的影像组学诊断技术术前准确区分颅内血管外皮细胞瘤与脑膜瘤

Accurate Preoperative Distinction of Intracranial Hemangiopericytoma From Meningioma Using a Multihabitat and Multisequence-Based Radiomics Diagnostic Technique.

作者信息

Wei Jingwei, Li Lianwang, Han Yuqi, Gu Dongsheng, Chen Qian, Wang Junmei, Li Runting, Zhan Jiong, Tian Jie, Zhou Dabiao

机构信息

The Key Laboratory of Molecular Imaging, Chinese Academy of Sciences Institute of Automation, Beijing, China.

Beijing Key Laboratory of Molecular Imaging, Beijing, China.

出版信息

Front Oncol. 2020 May 19;10:534. doi: 10.3389/fonc.2020.00534. eCollection 2020.

Abstract

Intracranial hemangiopericytoma (IHPC) and meningioma are both meningeal neoplasms, but they have extremely different malignancy and outcomes. Because of their similar radiological characteristics, they are difficult to distinguish prior to surgery, leading to a high rate of misdiagnosis. We enrolled 292 patients (IHPC, 155; meningiomas, 137) with complete clinic-radiological and histopathological data, from a 10-year database established at Tiantan hospital. Radiomics analysis of tumor and peritumoral edema was performed on multisequence magnetic resonance images, and a fusion radiomics signature was generated using a machine-learning strategy. By combining clinic-radiological data with the fusion radiomics signature, we developed an integrated diagnostic approach that we named the IHPC and Meningioma Diagnostic Tool (HMDT). The HMDT displayed remarkable diagnostic ability, with areas under the curve (AUCs) of 0.985 and 0.917 in the training and validation cohorts, respectively. The calibration curve showed excellent agreement between the diagnosis predicted by HMDT and the histological outcome, with -values of 0.801 and 0.622 for the training and the validation cohorts, respectively. Cross-validation showed no statistical difference across three divisions of the cohort, with average AUCs of 0.980 and 0.941 for the training and validation cohorts, respectively. Stratification analysis showed consistent performance of the HMDT in distinguishing IHPC from highly misdiagnosed subgroups of grade I meningioma and angiomatous meningioma (AM) with AUCs of 0.913 and 0.914 in the validation cohorts for the two subgroups. By integrating clinic-radiological information with radiomics signature, the proposed HMDT could assist in preoperative diagnosis to distinguish IHPC from meningioma, providing the basis for strategic decisions regarding surgery.

摘要

颅内血管外皮细胞瘤(IHPC)和脑膜瘤均为脑膜肿瘤,但它们的恶性程度和预后截然不同。由于它们具有相似的放射学特征,术前难以区分,导致误诊率很高。我们从天坛医院建立的一个10年数据库中纳入了292例患者(IHPC患者155例,脑膜瘤患者137例),这些患者具有完整的临床放射学和组织病理学数据。对多序列磁共振图像进行肿瘤及瘤周水肿的放射组学分析,并使用机器学习策略生成融合放射组学特征。通过将临床放射学数据与融合放射组学特征相结合,我们开发了一种综合诊断方法,将其命名为IHPC和脑膜瘤诊断工具(HMDT)。HMDT显示出卓越的诊断能力,在训练队列和验证队列中的曲线下面积(AUC)分别为0.985和0.917。校准曲线显示HMDT预测的诊断与组织学结果之间具有良好的一致性,训练队列和验证队列的一致性值分别为0.801和0.622。交叉验证显示,队列的三个分组之间无统计学差异,训练队列和验证队列的平均AUC分别为0.980和0.941。分层分析显示,HMDT在区分IHPC与I级脑膜瘤和血管瘤型脑膜瘤(AM)的高度误诊亚组方面表现一致,两个亚组验证队列中的AUC分别为0.913和0.914。通过将临床放射学信息与放射组学特征相结合,所提出的HMDT可协助术前诊断以区分IHPC与脑膜瘤,为手术策略决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b46/7248296/1efcd99329b0/fonc-10-00534-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验