Suppr超能文献

利用反向疫苗学和机器学习设计2019冠状病毒病疫苗

COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning.

作者信息

Ong Edison, Wong Mei U, Huffman Anthony, He Yongqun

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

bioRxiv. 2020 Mar 22:2020.03.20.000141. doi: 10.1101/2020.03.20.000141.

Abstract

To ultimately combat the emerging COVID-19 pandemic, it is desired to develop an effective and safe vaccine against this highly contagious disease caused by the SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M) protein, have been tested for vaccine development against SARS and MERS. However, these vaccine candidates might lack the induction of complete protection and have safety concerns. We then applied the Vaxign reverse vaccinology tool and the newly developed Vaxign-ML machine learning tool to predict COVID-19 vaccine candidates. By investigating the entire proteome of SARS-CoV-2, six proteins, including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10), were predicted to be adhesins, which are crucial to the viral adhering and host invasion. The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not been tested in any coronavirus vaccine studies and was selected for further investigation. The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV than among 15 coronaviruses infecting human and other animals. The protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes, and linear B-cell epitopes localized in specific locations and functional domains of the protein. By applying reverse vaccinology and machine learning, we predicted potential vaccine targets for effective and safe COVID-19 vaccine development. We then propose that an "Sp/Nsp cocktail vaccine" containing a structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective complementary immune responses.

摘要

为最终抗击新出现的新冠疫情,人们期望研发出一种针对由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的这种高传染性疾病的有效且安全的疫苗。我们的文献和临床试验调查表明,全病毒以及刺突(S)蛋白、核衣壳(N)蛋白和膜(M)蛋白已针对SARS和中东呼吸综合征(MERS)进行了疫苗研发测试。然而,这些候选疫苗可能缺乏诱导完全保护的能力,并且存在安全问题。然后,我们应用Vaxign反向疫苗学工具和新开发的Vaxign-ML机器学习工具来预测新冠疫苗候选物。通过研究SARS-CoV-2的整个蛋白质组,预测包括S蛋白和五种非结构蛋白(nsp3、3CL蛋白酶和nsp8-10)在内的六种蛋白质为黏附素,它们对病毒黏附和宿主侵袭至关重要。Vaxign-ML还预测S、nsp3和nsp8蛋白可诱导高保护性抗原性。除了常用的S蛋白外,nsp3蛋白尚未在任何冠状病毒疫苗研究中进行测试,因此被选作进一步研究对象。研究发现,nsp3在SARS-CoV-2、SARS-CoV和MERS-CoV之间比在感染人类和其他动物的15种冠状病毒之间更为保守。该蛋白还被预测含有混杂的主要组织相容性复合体I类(MHC-I)和II类(MHC-II)T细胞表位,以及位于该蛋白特定位置和功能域的线性B细胞表位。通过应用反向疫苗学和机器学习,我们预测了有效且安全的新冠疫苗研发的潜在疫苗靶点。然后我们提出,一种包含一种或多种结构蛋白(Sp)和一种或多种非结构蛋白(Nsp)的“Sp/Nsp混合疫苗”将刺激有效的互补免疫反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a26/11309323/685d0eafcd96/nihpp-2020.03.20.000141v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验