Suppr超能文献

基于深度学习的三维超分辨率CT影像组学模型:预测肺腺癌微乳头/实性成分的可能性

Deep-learning-based 3D super-resolution CT radiomics model: Predict the possibility of the micropapillary/solid component of lung adenocarcinoma.

作者信息

Xing Xiaowei, Li Liangping, Sun Mingxia, Yang Jiahu, Zhu Xinhai, Peng Fang, Du Jianzong, Feng Yue

机构信息

Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang, China.

出版信息

Heliyon. 2024 Jul 5;10(13):e34163. doi: 10.1016/j.heliyon.2024.e34163. eCollection 2024 Jul 15.

Abstract

OBJECTIVE

Invasive lung adenocarcinoma(ILA) with micropapillary (MPP)/solid (SOL) components has a poor prognosis. Preoperative identification is essential for decision-making for subsequent treatment. This study aims to construct and evaluate a super-resolution(SR) enhanced radiomics model designed to predict the presence of MPP/SOL components preoperatively to provide more accurate and individualized treatment planning.

METHODS

Between March 2018 and November 2023, patients who underwent curative intent ILA resection were included in the study. We implemented a deep transfer learning network on CT images to improve their resolution, resulting in the acquisition of preoperative super-resolution CT (SR-CT) images. Models were developed using radiomic features extracted from CT and SR-CT images. These models employed a range of classifiers, including Logistic Regression (LR), Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest, Extra Trees, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Multilayer Perceptron (MLP). The diagnostic performance of the models was assessed by measuring the area under the curve (AUC).

RESULT

A total of 245 patients were recruited, of which 109 (44.5 %) were diagnosed with ILA with MPP/SOL components. In the analysis of CT images, the SVM model exhibited outstanding effectiveness, recording AUC scores of 0.864 in the training group and 0.761 in the testing group. When this SVM approach was used to develop a radiomics model with SR-CT images, it recorded AUCs of 0.904 in the training and 0.819 in the test cohorts. The calibration curves indicated a high goodness of fit, while decision curve analysis (DCA) highlighted the model's clinical utility.

CONCLUSION

The study successfully constructed and evaluated a deep learning(DL)-enhanced SR-CT radiomics model. This model outperformed conventional CT radiomics models in predicting MPP/SOL patterns in ILA. Continued research and broader validation are necessary to fully harness and refine the clinical potential of radiomics when combined with SR reconstruction technology.

摘要

目的

具有微乳头(MPP)/实性(SOL)成分的浸润性肺腺癌(ILA)预后较差。术前识别对于后续治疗决策至关重要。本研究旨在构建并评估一种超分辨率(SR)增强的放射组学模型,用于术前预测MPP/SOL成分的存在,以提供更准确和个性化的治疗方案。

方法

2018年3月至2023年11月期间,接受根治性ILA切除术的患者纳入本研究。我们在CT图像上实施深度迁移学习网络以提高其分辨率,从而获取术前超分辨率CT(SR-CT)图像。利用从CT和SR-CT图像中提取的放射组学特征开发模型。这些模型采用了一系列分类器,包括逻辑回归(LR)、支持向量机(SVM)、k近邻(KNN)、随机森林、极端随机树、极端梯度提升(XGBoost)、轻量级梯度提升机(LightGBM)和多层感知器(MLP)。通过测量曲线下面积(AUC)评估模型的诊断性能。

结果

共招募245例患者,其中109例(44.5%)被诊断为具有MPP/SOL成分的ILA。在CT图像分析中,SVM模型表现出卓越的有效性,训练组的AUC评分为0.864,测试组为0.761。当使用这种SVM方法结合SR-CT图像开发放射组学模型时,训练队列和测试队列的AUC分别为0.904和0.819。校准曲线显示拟合优度高,而决策曲线分析(DCA)突出了模型的临床实用性。

结论

本研究成功构建并评估了一种深度学习(DL)增强的SR-CT放射组学模型。该模型在预测ILA中的MPP/SOL模式方面优于传统CT放射组学模型。将放射组学与SR重建技术相结合时,有必要进行持续研究和更广泛的验证,以充分发挥并完善其临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc87/11279278/5174963f4bc5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验