Suppr超能文献

将电子健康记录数据整合到用于改善信号检测的 ADEpedia-on-OHDSI 平台:免疫相关不良事件的案例研究

Integrating Electronic Health Record Data into the ADEpedia-on-OHDSI Platform for Improved Signal Detection: A Case Study of Immune-related Adverse Events.

作者信息

Yu Yue, Ruddy Kathryn J, Wen Andrew, Zong Nansu, Tsuji Shintaro, Chen Jun, Shah Nilay D, Jiang Guoqian

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN.

Department of Oncology, Mayo Clinic, Rochester, MN.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:710-719. eCollection 2020.

Abstract

With widespread adoption of electronic health records (EHRs), Real World Data and Real World Evidence (RWE) have been increasingly used by FDA for evaluating drug safety and effectiveness. However, integration of heterogeneous drug safety data sources and systems remains an impediment for effective pharmacovigilance studies. In an ongoing project, we have developed a next generation pharmacovigilance signal detection framework known as ADEpedia-on-OHDSI using the OMOP common data model (CDM). The objective of the study is to demonstrate the feasibility of the framework for integrating both spontaneous reporting data and EHR data for improved signal detection with a case study of immune-related adverse events. We first loaded the OMOP CDM with both recent and legacy FAERS (FDA Adverse Event Reporting System) data (from the time period between Jan. 2004 and Dec. 2018). We also integrated the clinical data from the Mayo Clinic EHR system for six oncological immunotherapy drugs. We implemented a signal detection algorithm and compared the timelines of positive signals detected from both FAERS and EHR data. We found that the signals detected from EHRs are 4 months earlier than signals detected from FAERS database (depending on the signal detection methods used) for the ipilimumab-induced hypopituitarism. Our CDM-based approach would be useful to provide a scalable solution to integrate both drug safety data and EHR data to generate RWE for improved signal detection.

摘要

随着电子健康记录(EHRs)的广泛采用,美国食品药品监督管理局(FDA)越来越多地使用真实世界数据和真实世界证据(RWE)来评估药物的安全性和有效性。然而,整合异构的药物安全数据源和系统仍然是有效开展药物警戒研究的一个障碍。在一个正在进行的项目中,我们使用观测医疗结局合作组织(OMOP)通用数据模型(CDM)开发了一个名为“ADEpedia-on-OHDSI”的下一代药物警戒信号检测框架。本研究的目的是通过免疫相关不良事件的案例研究,证明该框架整合自发报告数据和电子健康记录数据以改进信号检测的可行性。我们首先将近期和遗留的FDA不良事件报告系统(FAERS)数据(时间段为2004年1月至2018年12月)加载到OMOP CDM中。我们还整合了梅奥诊所电子健康记录系统中六种肿瘤免疫治疗药物的临床数据。我们实施了一种信号检测算法,并比较了从FAERS和电子健康记录数据中检测到的阳性信号的时间线。我们发现,对于伊匹单抗诱导的垂体功能减退,从电子健康记录中检测到的信号比从FAERS数据库中检测到的信号早4个月(取决于所使用的信号检测方法)。我们基于CDM的方法将有助于提供一个可扩展的解决方案,以整合药物安全数据和电子健康记录数据,生成真实世界证据以改进信号检测。

相似文献

2
ADEpedia-on-OHDSI: A next generation pharmacovigilance signal detection platform using the OHDSI common data model.
J Biomed Inform. 2019 Mar;91:103119. doi: 10.1016/j.jbi.2019.103119. Epub 2019 Feb 7.
5
Pharmacovigilance and Clinical Environment: Utilizing OMOP-CDM and OHDSI Software Stack to Integrate EHR Data.
Stud Health Technol Inform. 2021 May 27;281:555-559. doi: 10.3233/SHTI210232.
7
Evaluating performance of electronic healthcare records and spontaneous reporting data in drug safety signal detection.
Int J Clin Pharm. 2015 Feb;37(1):94-104. doi: 10.1007/s11096-014-0044-5. Epub 2014 Dec 9.
10
INSPIRE datahub: a pan-African integrated suite of services for harmonising longitudinal population health data using OHDSI tools.
Front Digit Health. 2024 Jan 29;6:1329630. doi: 10.3389/fdgth.2024.1329630. eCollection 2024.

引用本文的文献

本文引用的文献

1
Patient-Experience Data and Bias - What Ratings Don't Tell Us.
N Engl J Med. 2019 Feb 28;380(9):801-803. doi: 10.1056/NEJMp1813418.
2
ADEpedia-on-OHDSI: A next generation pharmacovigilance signal detection platform using the OHDSI common data model.
J Biomed Inform. 2019 Mar;91:103119. doi: 10.1016/j.jbi.2019.103119. Epub 2019 Feb 7.
5
Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness.
JAMA. 2018 Sep 4;320(9):867-868. doi: 10.1001/jama.2018.10136.
7
Leveraging Food and Drug Administration Adverse Event Reports for the Automated Monitoring of Electronic Health Records in a Pediatric Hospital.
Biomed Inform Insights. 2017 Jun 8;9:1178222617713018. doi: 10.1177/1178222617713018. eCollection 2017.
8
Characterizing treatment pathways at scale using the OHDSI network.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7329-36. doi: 10.1073/pnas.1510502113. Epub 2016 Jun 6.
9
Systematic review on the prevalence, frequency and comparative value of adverse events data in social media.
Br J Clin Pharmacol. 2015 Oct;80(4):878-88. doi: 10.1111/bcp.12746. Epub 2015 Sep 16.
10
Adverse Drug Reaction Identification and Extraction in Social Media: A Scoping Review.
J Med Internet Res. 2015 Jul 10;17(7):e171. doi: 10.2196/jmir.4304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验