Kamat Gaurav A, Yan Chang, Osowiecki Wojciech T, Moreno-Hernandez Ivan A, Ledendecker Marc, Alivisatos A Paul
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.
Department of Chemistry, University of California, Berkeley, California 94720, United States.
J Phys Chem Lett. 2020 Jul 2;11(13):5318-5323. doi: 10.1021/acs.jpclett.0c01551. Epub 2020 Jun 19.
The understanding of synthetic pathways of bimetallic nanocrystals remains limited due to the complex energy landscapes and dynamics involved. In this work, we investigate the formation of self-limiting Cu@Ag core-shell nanoparticles starting from Cu nanocrystals followed by galvanic replacement with Ag ions. Bulk quantification with atomic emission spectroscopy and spatially resolved elemental mapping with electron microscopy reveal distinct nucleation regimes that produce nanoparticles with a tunable Ag shell thickness, but only up to a certain limiting thickness. We develop a quantitative transport model that explains this observed self-limiting structure as arising from the balance between entropy-driven interdiffusion and a positive mixing enthalpy. The proposed model depends only on the intrinsic physical properties of the system such as diffusivity and mixing energy and directly yields a high level of agreement with the elemental mapping profiles without requiring additional fit parameters.
由于涉及复杂的能量景观和动力学,对双金属纳米晶体合成途径的理解仍然有限。在这项工作中,我们研究了自限性Cu@Ag核壳纳米颗粒的形成,该过程从Cu纳米晶体开始,随后通过用Ag离子进行电化置换。用原子发射光谱法进行体相定量分析,并用电子显微镜进行空间分辨元素映射,揭示了不同的成核机制,这些机制产生了具有可调Ag壳厚度的纳米颗粒,但仅限于一定的极限厚度。我们开发了一个定量传输模型,该模型解释了观察到的自限性结构是由熵驱动的相互扩散和正混合焓之间的平衡引起的。所提出的模型仅取决于系统的固有物理性质,如扩散率和混合能,并且无需额外的拟合参数就能直接与元素映射轮廓高度吻合。