Suppr超能文献

电偶置换过程中Cu@Ag核壳纳米晶体的自限性壳层形成

Self-Limiting Shell Formation in Cu@Ag Core-Shell Nanocrystals during Galvanic Replacement.

作者信息

Kamat Gaurav A, Yan Chang, Osowiecki Wojciech T, Moreno-Hernandez Ivan A, Ledendecker Marc, Alivisatos A Paul

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

Department of Chemistry, University of California, Berkeley, California 94720, United States.

出版信息

J Phys Chem Lett. 2020 Jul 2;11(13):5318-5323. doi: 10.1021/acs.jpclett.0c01551. Epub 2020 Jun 19.

Abstract

The understanding of synthetic pathways of bimetallic nanocrystals remains limited due to the complex energy landscapes and dynamics involved. In this work, we investigate the formation of self-limiting Cu@Ag core-shell nanoparticles starting from Cu nanocrystals followed by galvanic replacement with Ag ions. Bulk quantification with atomic emission spectroscopy and spatially resolved elemental mapping with electron microscopy reveal distinct nucleation regimes that produce nanoparticles with a tunable Ag shell thickness, but only up to a certain limiting thickness. We develop a quantitative transport model that explains this observed self-limiting structure as arising from the balance between entropy-driven interdiffusion and a positive mixing enthalpy. The proposed model depends only on the intrinsic physical properties of the system such as diffusivity and mixing energy and directly yields a high level of agreement with the elemental mapping profiles without requiring additional fit parameters.

摘要

由于涉及复杂的能量景观和动力学,对双金属纳米晶体合成途径的理解仍然有限。在这项工作中,我们研究了自限性Cu@Ag核壳纳米颗粒的形成,该过程从Cu纳米晶体开始,随后通过用Ag离子进行电化置换。用原子发射光谱法进行体相定量分析,并用电子显微镜进行空间分辨元素映射,揭示了不同的成核机制,这些机制产生了具有可调Ag壳厚度的纳米颗粒,但仅限于一定的极限厚度。我们开发了一个定量传输模型,该模型解释了观察到的自限性结构是由熵驱动的相互扩散和正混合焓之间的平衡引起的。所提出的模型仅取决于系统的固有物理性质,如扩散率和混合能,并且无需额外的拟合参数就能直接与元素映射轮廓高度吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验