Jonasse Just P, Perxés Perich Marta, Turner Savannah J, van der Hoeven Jessi E S
Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
Nanoscale. 2025 Mar 24;17(12):7100-7113. doi: 10.1039/d4nr04424j.
Core-shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell metal. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core-shell catalysis. In this work, we achieve such a core-shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell AuCu-core nanoparticles. Our seed-mediated growth methodology yields well-defined AuCu-cores, tunable in composition from 0 at% Cu to 77 at% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ∼3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from -3.62% compressive-, to +3.79% tensile strain, while retaining full control over all other structural characteristics of the system.
核壳纳米粒子在电催化、光催化和热催化方面可展现出显著增强的性能。晶格应变在其中起着关键作用,它是由核与壳金属的晶体结构不匹配所诱导产生的。然而,由于缺乏一种能够系统控制晶格应变的材料体系,研究晶格应变的影响一直具有挑战性,这阻碍了核壳催化领域的进一步发展。在这项工作中,我们通过胶体合成三金属铂壳金铜核纳米粒子实现了这样一种核壳纳米粒子体系。我们的种子介导生长方法可生成明确的金铜核,其组成可在从0原子百分比的铜到77原子百分比的铜范围内进行调节,且尺寸单分散。随后的外延生长会形成均匀的、外延生长的铂壳,其厚度可控,约为3个原子层。通过采用结合X射线衍射、电子衍射和像差校正电子显微镜的多技术表征策略,我们在单个纳米粒子、整体和体相尺度水平上揭示了三金属体系的原子结构,并且明确证明了铂壳中应变从-3.62%的压缩应变到+3.79%的拉伸应变的可控变化,同时保持对体系所有其他结构特征的完全控制。