Suppr超能文献

基于材料特性和激光雷达性能的汽车激光雷达建模方法

Automotive Lidar Modelling Approach Based on Material Properties and Lidar Capabilities.

作者信息

Muckenhuber Stefan, Holzer Hannes, Bockaj Zrinka

机构信息

Virtual Vehicle Research GmbH, Inffeldgasse 21A, 8010 Graz, Austria.

Infineon Technologies Austria AG, Babenbergerstrasse 10, 8020 Graz, Austria.

出版信息

Sensors (Basel). 2020 Jun 10;20(11):3309. doi: 10.3390/s20113309.

Abstract

Development and validation of reliable environment perception systems for automated driving functions requires the extension of conventional physical test drives with simulations in virtual test environments. In such a virtual test environment, a perception sensor is replaced by a sensor model. A major challenge for state-of-the-art sensor models is to represent the large variety of material properties of the surrounding objects in a realistic manner. Since lidar sensors are considered to play an essential role for upcoming automated vehicles, this paper presents a new lidar modelling approach that takes material properties and corresponding lidar capabilities into account. The considered material property is the incidence angle dependent reflectance of the illuminated material in the infrared spectrum and the considered lidar property its capability to detect a material with a certain reflectance up to a certain range. A new material classification for lidar modelling in the automotive context is suggested, distinguishing between 7 material classes and 23 subclasses. To measure angle dependent reflectance in the infrared spectrum, a new measurement device based on a time of flight camera is introduced and calibrated using Lambertian targets with defined reflectance values at 10 % , 50 % , and 95 % . Reflectance measurements of 9 material subclasses are presented and 488 spectra from the NASA ECOSTRESS library are considered to evaluate the new measurement device. The parametrisation of the lidar capabilities is illustrated by presenting a lidar measurement campaign with a new Infineon lidar prototype and relevant data from 12 common lidar types.

摘要

为自动驾驶功能开发和验证可靠的环境感知系统,需要在虚拟测试环境中进行模拟,以扩展传统的物理测试驾驶。在这样的虚拟测试环境中,感知传感器由传感器模型代替。对于当前的传感器模型来说,一个主要挑战是以逼真的方式呈现周围物体的各种材料属性。由于激光雷达传感器被认为对即将推出的自动驾驶车辆起着至关重要的作用,本文提出了一种新的激光雷达建模方法,该方法考虑了材料属性和相应的激光雷达能力。所考虑的材料属性是红外光谱中被照亮材料的入射角相关反射率,所考虑的激光雷达属性是其在一定范围内检测具有一定反射率材料的能力。提出了一种用于汽车领域激光雷达建模的新材料分类方法,区分了7种材料类别和23个子类别。为了测量红外光谱中的角度相关反射率,引入了一种基于飞行时间相机的新测量设备,并使用反射率值分别为10%、50%和95%的朗伯目标进行校准。给出了9种材料子类别的反射率测量结果,并考虑了来自美国国家航空航天局生态压力库的488个光谱,以评估新的测量设备。通过展示使用新的英飞凌激光雷达原型进行的激光雷达测量活动以及来自12种常见激光雷达类型的相关数据,说明了激光雷达能力的参数化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef6/7309070/b50fa3073733/sensors-20-03309-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验