Suppr超能文献

基于人工智能的脑缺血检测(CIDAI)研究方案。

Cerebral ischemia detection using artificial intelligence (CIDAI)-A study protocol.

机构信息

Department of Anaesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Anaesthesiology and Intensive Care, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

出版信息

Acta Anaesthesiol Scand. 2020 Oct;64(9):1335-1342. doi: 10.1111/aas.13657. Epub 2020 Jul 2.

Abstract

BACKGROUND

The onset of cerebral ischemia is difficult to predict in patients with altered consciousness using the methods available. We hypothesize that changes in Heart Rate Variability (HRV), Near-Infrared Spectroscopy (NIRS), and Electroencephalography (EEG) correlated with clinical data and processed by artificial intelligence (AI) can indicate the development of imminent cerebral ischemia and reperfusion, respectively. This study aimed to develop a method that enables detection of imminent cerebral ischemia in unconscious patients, noninvasively and with the support of AI.

METHODS

This prospective observational study will include patients undergoing elective surgery for carotid endarterectomy and patients undergoing acute endovascular embolectomy for cerebral arterial embolism. HRV, NIRS, and EEG measurements and clinical information on patient status will be collected and processed using machine learning. The study will take place at Sahlgrenska University Hospital, Gothenburg, Sweden. Inclusion will start in September 2020, and patients will be included until a robust model can be constructed. By analyzing changes in HRV, EEG, and NIRS measurements in conjunction with cerebral ischemia or cerebral reperfusion, it should be possible to train artificial neural networks to detect patterns of impending cerebral ischemia. The analysis will be performed using machine learning with long short-term memory artificial neural networks combined with convolutional layers to identify patterns consistent with cerebral ischemia and reperfusion.

DISCUSSION

Early signs of cerebral ischemia could be detected more rapidly by identifying patterns in integrated, continuously collected physiological data processed by AI. Clinicians could then be alerted, and appropriate actions could be taken to improve patient outcomes.

摘要

背景

目前,对于意识改变的患者,很难通过现有方法预测脑缺血的发作。我们假设,心率变异性(HRV)、近红外光谱(NIRS)和脑电图(EEG)的变化与临床数据相关,并且经过人工智能(AI)处理,可以分别指示即将发生的脑缺血和再灌注。本研究旨在开发一种方法,能够在无意识的患者中,通过非侵入性方式并借助 AI,检测即将发生的脑缺血。

方法

这是一项前瞻性观察性研究,将纳入行颈动脉内膜切除术的择期手术患者和行急性血管内取栓术治疗脑动脉栓塞的患者。将采集 HRV、NIRS 和 EEG 测量值以及患者状态的临床信息,并使用机器学习进行处理。该研究将在瑞典哥德堡的萨尔格伦斯卡大学医院进行。纳入将于 2020 年 9 月开始,直到能够构建出稳健的模型为止。通过分析 HRV、EEG 和 NIRS 测量值的变化,结合脑缺血或脑再灌注,应该可以训练人工神经网络来检测即将发生脑缺血的模式。分析将使用具有长短期记忆人工神经网络的机器学习以及卷积层来识别与脑缺血和再灌注一致的模式。

讨论

通过识别 AI 处理的综合、连续采集的生理数据中的模式,可以更快地检测到脑缺血的早期迹象。然后,临床医生可以得到警报,并采取适当的措施来改善患者的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验