文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EBNA2 缺失型 Epstein-Barr 病毒(EBV)分离株 P3HR1 可在人源化小鼠中引起霍奇金样淋巴瘤和弥漫性大 B 细胞淋巴瘤,并具有 II 型和 Wp 局限型潜伏期类型。

EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice.

机构信息

Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Pathog. 2020 Jun 15;16(6):e1008590. doi: 10.1371/journal.ppat.1008590. eCollection 2020 Jun.


DOI:10.1371/journal.ppat.1008590
PMID:32542010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7316346/
Abstract

EBV transforms B cells in vitro and causes human B-cell lymphomas including classical Hodgkin lymphoma (CHL), Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). The EBV latency protein, EBNA2, transcriptionally activates the promoters of all latent viral protein-coding genes expressed in type III EBV latency and is essential for EBV's ability to transform B cells in vitro. However, EBNA2 is not expressed in EBV-infected CHLs and BLs in humans. EBV-positive CHLs have type II latency and are largely driven by the EBV LMP1/LMP2A proteins, while EBV-positive BLs, which usually have type I latency are largely driven by c-Myc translocations, and only express the EBNA1 protein and viral non-coding RNAs. Approximately 15% of human BLs contain naturally occurring EBNA2-deleted viruses that support a form of viral latency known as Wp-restricted (expressing the EBNA-LP, EBNA3A/3B/3C, EBNA1 and BHRF1 proteins), but whether Wp-restricted latency and/or EBNA2-deleted EBV can induce lymphomas in humanized mice, or in the absence of c-Myc translocations, is unknown. Here we show that a naturally occurring EBNA2-deleted EBV strain (P3HR1) isolated from a human BL induces EBV-positive B-cell lymphomas in a subset of infected cord blood-humanized (CBH) mice. Furthermore, we find that P3HR1-infected lymphoma cells support two different viral latency types and phenotypes that are mutually exclusive: 1) Large (often multinucleated), CD30-positive, CD45-negative cells reminiscent of the Reed-Sternberg (RS) cells in CHL that express high levels of LMP1 but not EBNA-LP (consistent with type II viral latency); and 2) smaller monomorphic CD30-negative DLBCL-like cells that express EBNA-LP and EBNA3A but not LMP1 (consistent with Wp-restricted latency). These results reveal that EBNA2 is not absolutely required for EBV to form tumors in CBH mice and suggest that P3HR1 virus can be used to model EBV positive lymphomas with both Wp-restricted and type II latency in vivo.

摘要

EBV 在体外转化 B 细胞,并导致人类 B 细胞淋巴瘤,包括经典霍奇金淋巴瘤(CHL)、伯基特淋巴瘤(BL)和弥漫性大 B 细胞淋巴瘤(DLBCL)。EBV 潜伏期蛋白 EBNA2 转录激活 III 型 EBV 潜伏期中所有潜伏病毒蛋白编码基因的启动子,是 EBV 在体外转化 B 细胞的必需条件。然而,EBV 感染的人类 CHL 和 BL 中并不表达 EBNA2。EBV 阳性 CHL 具有 II 型潜伏期,主要由 EBV LMP1/LMP2A 蛋白驱动,而 EBV 阳性 BL 通常具有 I 型潜伏期,主要由 c-Myc 易位驱动,仅表达 EBNA1 蛋白和病毒非编码 RNA。大约 15%的人类 BL 含有自然发生的 EBNA2 缺失病毒,支持一种称为 Wp 限制(表达 EBNA-LP、EBNA3A/3B/3C、EBNA1 和 BHRF1 蛋白)的病毒潜伏期形式,但 Wp 限制潜伏期和/或 EBNA2 缺失 EBV 是否能在人源化小鼠中诱导淋巴瘤,或在没有 c-Myc 易位的情况下,尚不清楚。在这里,我们表明,从人类 BL 中分离的一种自然发生的 EBNA2 缺失 EBV 株(P3HR1)在感染脐带血人源化(CBH)小鼠的亚群中诱导 EBV 阳性 B 细胞淋巴瘤。此外,我们发现 P3HR1 感染的淋巴瘤细胞支持两种不同的、相互排斥的病毒潜伏期类型和表型:1)大(通常多核)、CD30 阳性、CD45 阴性的细胞,类似于 CHL 中的 Reed-Sternberg(RS)细胞,表达高水平的 LMP1 但不表达 EBNA-LP(与 II 型病毒潜伏期一致);2)较小的单形 CD30 阴性 DLBCL 样细胞,表达 EBNA-LP 和 EBNA3A,但不表达 LMP1(与 Wp 限制潜伏期一致)。这些结果表明,EBNA2 并非 EBV 在 CBH 小鼠中形成肿瘤所必需的,并且表明 P3HR1 病毒可用于在体内模拟具有 Wp 限制和 II 型潜伏期的 EBV 阳性淋巴瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/1ea1fa2d356a/ppat.1008590.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/11e625684a2a/ppat.1008590.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/7b2758ab2a23/ppat.1008590.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/49c8e64670b0/ppat.1008590.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/bc9f84e695a6/ppat.1008590.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/82584f9d2f37/ppat.1008590.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/23d71a6f69fe/ppat.1008590.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/5ef99656fd2e/ppat.1008590.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/cf17c77fbbf9/ppat.1008590.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/00769894e5cd/ppat.1008590.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/744ed1d4c7a2/ppat.1008590.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/a3f44cc28e28/ppat.1008590.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/934dfb3e36f4/ppat.1008590.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/1ea1fa2d356a/ppat.1008590.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/11e625684a2a/ppat.1008590.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/7b2758ab2a23/ppat.1008590.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/49c8e64670b0/ppat.1008590.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/bc9f84e695a6/ppat.1008590.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/82584f9d2f37/ppat.1008590.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/23d71a6f69fe/ppat.1008590.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/5ef99656fd2e/ppat.1008590.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/cf17c77fbbf9/ppat.1008590.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/00769894e5cd/ppat.1008590.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/744ed1d4c7a2/ppat.1008590.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/a3f44cc28e28/ppat.1008590.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/934dfb3e36f4/ppat.1008590.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4631/7316346/1ea1fa2d356a/ppat.1008590.g013.jpg

相似文献

[1]
EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice.

PLoS Pathog. 2020-6-15

[2]
Latent Epstein-Barr virus infection collaborates with Myc over-expression in normal human B cells to induce Burkitt-like Lymphomas in mice.

PLoS Pathog. 2024-4-15

[3]
An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model.

J Virol. 2020-5-4

[4]
Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis.

J Virol. 2005-8

[5]
Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells.

Proc Natl Acad Sci U S A. 2006-10-3

[6]
Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential.

J Virol. 2017-3-13

[7]
Epstein-Barr virus-encoded Bcl-2 homologue functions as a survival factor in Wp-restricted Burkitt lymphoma cell line P3HR-1.

J Virol. 2009-12-30

[8]
An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model.

PLoS Pathog. 2018-8-20

[9]
Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature.

J Virol. 2012-12-26

[10]
EBNA2 and Its Coactivator EBNA-LP.

Curr Top Microbiol Immunol. 2015

引用本文的文献

[1]
E2F1 suppresses Epstein-Barr virus lytic reactivation through cellular and viral transcriptional networks.

PLoS Pathog. 2025-8-7

[2]
Viral oncogenesis in cancer: from mechanisms to therapeutics.

Signal Transduct Target Ther. 2025-5-12

[3]
3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma.

Cells. 2024-10-23

[4]
HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus.

Clin Microbiol Rev. 2024-9-12

[5]
Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation.

PLoS Pathog. 2024-3

[6]
Role of brentuximab vedotin plus sirolimus in the treatment of classical Hodgkin lymphoma type post-transplant lymphoproliferative disorder: a case-based review.

Ann Hematol. 2024-7

[7]
Exploring the Genetic Diversity of Epstein-Barr Virus among Patients with Gastric Cancer in Southern Chile.

Int J Mol Sci. 2023-7-10

[8]
Bioinformatics analysis of the pathogenic link between Epstein-Barr virus infection, systemic lupus erythematosus and diffuse large B cell lymphoma.

Sci Rep. 2023-4-18

[9]
EBV and Lymphomagenesis.

Cancers (Basel). 2023-4-4

[10]
Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies.

Life Sci Alliance. 2023-5

本文引用的文献

[1]
B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection.

PLoS Pathog. 2020-2-14

[2]
Epstein-Barr virus-encoded LMP1 induces ectopic CD137 expression on Hodgkin and Reed-Sternberg cells via the PI3K-AKT-mTOR pathway.

Leuk Lymphoma. 2019-5-6

[3]
An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model.

PLoS Pathog. 2018-8-20

[4]
Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300.

J Virol. 2018-4-13

[5]
Epstein-Barr virus nuclear antigen EBNA-LP is essential for transforming naïve B cells, and facilitates recruitment of transcription factors to the viral genome.

PLoS Pathog. 2018-2-20

[6]
Epstein-Barr Virus-Positive Extranodal Marginal Zone Lymphoma of Bronchial-Associated Lymphoid Tissue in the Posttransplant Setting: An Immunodeficiency-Related (Posttransplant) Lymphoproliferative Disorder?

Am J Clin Pathol. 2017-12-20

[7]
Mouse model of Epstein-Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease.

Proc Natl Acad Sci U S A. 2017-5-2

[8]
Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential.

J Virol. 2017-3-13

[9]
Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.

J Virol Methods. 2017-3

[10]
The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis.

Int J Cancer. 2017-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索