Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
PLoS Pathog. 2024 Mar 26;20(3):e1011998. doi: 10.1371/journal.ppat.1011998. eCollection 2024 Mar.
Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.
EB 病毒(EBV)是导致约 1%人类癌症的原因之一,包括几种 B 细胞肿瘤。EBV 生命周期的一个特征是它能够将代谢静止的 B 淋巴细胞转化为具有病毒潜伏性的高增殖性 B 细胞母细胞,同时需要间歇性的裂解周期诱导才能产生子代病毒。我们对潜伏感染的幼稚 B 淋巴细胞和裂解周期复制后转化的 B 淋巴细胞进行了 RNA-Seq 分析,结果表明膜相关碳酸酐酶同工酶 CA9 的表达模式截然不同,CA9 是维持细胞酸碱平衡的必需组成部分。我们发现,虽然 CA9 的表达在潜伏感染模型中被转录激活,但裂解周期复制会抑制其表达。使用特异性抑制剂抑制 CA 活性可延缓 EBV 诱导的 B 细胞转化,通过降低细胞内 pH 值、诱导细胞凋亡和促进 CA9 转录本降解,抑制转化 B 淋巴细胞的 B 细胞扩增和集落形成能力。进一步利用 ChIP-Seq 数据的重新分析以及 EBNA2 缺失病毒、EBNA2 异位表达和 CA9 表达的 sh-RNA 介导的敲低,我们证明了 EBNA2 介导的 CA9 转录激活对于 EBV 潜伏感染 B 细胞的存活是必需的。相比之下,在裂解周期再激活过程中,CA9 的表达被 EBV 裂解周期主要转录激活子 BZLF1 通过其转录激活结构域转录抑制。总之,我们的研究强调了 CA9 表达及其活性在调节 pH 平衡中的动态变化,是 EBV 诱导 B 细胞转化和随后发生 B 细胞淋巴瘤的主要驱动因素之一。