Suppr超能文献

组蛋白甲基转移酶 MLL4 通过与 MEF2 的相互作用控制肌纤维的特征和肌肉性能。

Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction.

机构信息

State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.

Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.

出版信息

J Clin Invest. 2020 Sep 1;130(9):4710-4725. doi: 10.1172/JCI136155.

Abstract

Skeletal muscle depends on the precise orchestration of contractile and metabolic gene expression programs to direct fiber-type specification and to ensure muscle performance. Exactly how such fiber type-specific patterns of gene expression are established and maintained remains unclear, however. Here, we demonstrate that histone monomethyl transferase MLL4 (KMT2D), an enhancer regulator enriched in slow myofibers, plays a critical role in controlling muscle fiber identity as well as muscle performance. Skeletal muscle-specific ablation of MLL4 in mice resulted in downregulation of the slow oxidative myofiber gene program, decreased numbers of type I myofibers, and diminished mitochondrial respiration, which caused reductions in muscle fatty acid utilization and endurance capacity during exercise. Genome-wide ChIP-Seq and mRNA-Seq analyses revealed that MLL4 directly binds to enhancers and functions as a coactivator of the myocyte enhancer factor 2 (MEF2) to activate transcription of slow oxidative myofiber genes. Importantly, we also found that the MLL4 regulatory circuit is associated with muscle fiber-type remodeling in humans. Thus, our results uncover a pivotal role for MLL4 in specifying structural and metabolic identities of myofibers that govern muscle performance. These findings provide therapeutic opportunities for enhancing muscle fitness to combat a variety of metabolic and muscular diseases.

摘要

骨骼肌依赖于收缩和代谢基因表达程序的精确协调,以指导纤维类型特化,并确保肌肉性能。然而,这种纤维类型特异性基因表达模式是如何建立和维持的还不清楚。在这里,我们证明了组蛋白甲基转移酶 MLL4(KMT2D),一种在慢肌纤维中丰富的增强子调节剂,在控制肌肉纤维特性和肌肉性能方面起着关键作用。在小鼠中特异性敲除骨骼肌中的 MLL4 导致慢氧化肌纤维基因程序下调,I 型肌纤维数量减少,线粒体呼吸能力下降,这导致运动时肌肉脂肪酸利用和耐力能力下降。全基因组 ChIP-Seq 和 mRNA-Seq 分析表明,MLL4 直接结合到增强子上,并作为肌细胞增强因子 2(MEF2)的共激活因子发挥作用,激活慢氧化肌纤维基因的转录。重要的是,我们还发现 MLL4 调节回路与人类的肌肉纤维类型重塑有关。因此,我们的研究结果揭示了 MLL4 在决定肌纤维的结构和代谢特性方面的关键作用,这些特性决定了肌肉性能。这些发现为增强肌肉适应性提供了治疗机会,以对抗各种代谢和肌肉疾病。

相似文献

2
Dynamic enhancers control skeletal muscle identity and reprogramming.动态增强子控制骨骼肌的身份和重编程。
PLoS Biol. 2019 Oct 7;17(10):e3000467. doi: 10.1371/journal.pbio.3000467. eCollection 2019 Oct.
3

引用本文的文献

1
Epigenetic Changes Associated With Obesity-related Metabolic Comorbidities.与肥胖相关代谢合并症相关的表观遗传变化
J Endocr Soc. 2025 Aug 4;9(9):bvaf129. doi: 10.1210/jendso/bvaf129. eCollection 2025 Sep.
2
Epigenetic Mechanisms in Heart Diseases.心脏病中的表观遗传机制
Rev Cardiovasc Med. 2025 Jul 30;26(7):38696. doi: 10.31083/RCM38696. eCollection 2025 Jul.

本文引用的文献

1
Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis.IRE1α-XBP1s 轴将 COPII 囊泡运输与营养可用性偶联。
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11776-11785. doi: 10.1073/pnas.1814480116. Epub 2019 May 23.
7
H3K4 Methyltransferase Activity Is Required for MLL4 Protein Stability.MLL4蛋白稳定性需要H3K4甲基转移酶活性。
J Mol Biol. 2017 Jun 30;429(13):2046-2054. doi: 10.1016/j.jmb.2016.12.016. Epub 2016 Dec 21.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验