Suppr超能文献

在分析专长时将主观数据与客观数据相结合:应用于羽毛球的机器学习方法。

Complementing subjective with objective data in analysing expertise: A machine-learning approach applied to badminton.

机构信息

Univ. Littoral Côte d'Opale, Univ. Lille, Univ. Artois, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société , F-59140 Dunkerque, France.

Université de Strasbourg, E3S UR 1342, Faculté des Sciences du Sport , F-67000, Strasbourg, France.

出版信息

J Sports Sci. 2020 Sep;38(17):1943-1952. doi: 10.1080/02640414.2020.1764812. Epub 2020 Jun 17.

Abstract

This study aimed to assess which combination of subjective and empirical data might help to identify the expertise level. A group of 10 expert coaches classified 40 participants in 5 different expertise groups based on the video footage of the rallies. The expertise levels were determined using a typology based on a continuum of 5 conative stages: (1) structural, (2) functional, (3) technical, (4) contextual, and (5) expertise. The video allowed empirical measurement of the duration of the rallies, and tri-axial accelerometers measured the intensity of the player's involvement. A principal component analysis showed that two dimensions explained 54.9% of the total variance in the data and that conative stage and empirical parameters during rallies (duration, intensity of the game) were correlated with axis 1, whereas duration and acceleration data between rallies were correlated with axis 2. A random forest algorithm showed that among the parameters considered, acceleration, duration of the rallies, and time between rallies could predict conative stages with a prediction accuracy above possibility. This study suggests that performance analysis benefits from the confrontation of subjective and objective data in order to design training plans according to the expertise level of the participants.

摘要

本研究旨在评估哪些主观和经验数据的组合可能有助于识别专业水平。一组 10 名专家教练根据集会的视频片段将 40 名参与者分为 5 个不同的专业组。使用基于 5 个意志阶段连续体的类型学来确定专业水平:(1)结构,(2)功能,(3)技术,(4)上下文和(5)专长。视频允许对集会的持续时间进行经验测量,三轴加速度计测量运动员参与的强度。主成分分析表明,两个维度解释了数据总方差的 54.9%,并且集会期间的意志阶段和经验参数(持续时间、比赛强度)与轴 1 相关,而集会之间的持续时间和加速度数据与轴 2 相关。随机森林算法表明,在所考虑的参数中,加速度、集会持续时间和集会之间的时间可以预测意志阶段,预测准确率高于可能性。本研究表明,性能分析受益于主观和客观数据的对抗,以便根据参与者的专业水平设计培训计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验