Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
J Am Soc Nephrol. 2020 Aug;31(8):1905-1914. doi: 10.1681/ASN.2019121272. Epub 2020 Jun 16.
Glomerular hyperfiltration resulting from an elevated intraglomerular pressure (Pglom) is an important cause of CKD, but there is no feasible method to directly assess Pglom in humans. We developed a model to estimate Pglom in patients from combined renal arterial pressure and flow measurements.
We performed hemodynamic measurements in 34 patients undergoing renal or cardiac angiography under baseline conditions and during hyperemia induced by intrarenal dopamine infusion (30 g/kg). For each participant during baseline and hyperemia, we fitted an adapted three-element Windkessel model that consisted of characteristic impedance, compliance, afferent resistance, and Pglom.
We successfully analyzed data from 28 (82%) patients. Median age was 58 years (IQR, 52-65), median eGFR was 95 ml/min per 1.73 m (IQR, 74-100) using the CKD-EPI formula, 30% had microalbuminuria, and 32% had diabetes. The model showed a mean Pglom of 48.0 mm Hg (SD=10.1) at baseline. Under hyperemia, flow increased by 88% (95% CI, 68% to 111%). This resulted in a 165% (95% CI, 79% to 294%) increase in afferent compliance and a 13.1-mm Hg (95% CI, 10.0 to 16.3) decrease in Pglom. In multiple linear regression analysis, diabetes (coefficient, 10.1; 95% CI, 5.1 to 15.1), BMI (0.99 per kg/m; 95% CI, 0.38 to 1.59), and renal perfusion pressure (0.42 per mm Hg; 95% CI, 0.25 to 0.59) were significantly positively associated with baseline Pglom.
We constructed a model on the basis of proximal renal arterial pressure and flow velocity measurements that provides an overall estimate of glomerular pressure and afferent and efferent resistance in humans. The model provides a novel research technique to evaluate the hemodynamics of CKD on the basis of direct pressure and flow measurements.
Functional HEmodynamics in patients with and without Renal Artery stenosis (HERA), NL40795.018.12 at the Dutch national trial registry (toetsingonline.nl).
肾小球高滤过是由肾小球内压(Pglom)升高引起的,是 CKD 的一个重要原因,但目前尚无可行的方法直接评估人体内的 Pglom。我们开发了一种模型,通过测量肾内动脉压力和流量来估算患者的 Pglom。
我们对 34 例在基线状态下和肾内多巴胺输注(30μg/kg)诱导的高灌注期间接受肾或心脏血管造影的患者进行了血流动力学测量。对于每个参与者在基线和高灌注期间,我们拟合了一个改良的三元素风箱模型,该模型由特征阻抗、顺应性、入球阻力和 Pglom 组成。
我们成功分析了 28 例(82%)患者的数据。中位年龄为 58 岁(IQR,52-65),应用 CKD-EPI 公式计算的中位 eGFR 为 95ml/min/1.73m(IQR,74-100),30%的患者有微量白蛋白尿,32%的患者有糖尿病。模型显示基线时 Pglom 平均值为 48.0mmHg(SD=10.1)。在高灌注下,流量增加了 88%(95%CI,68%至 111%)。这导致入球顺应性增加了 165%(95%CI,79%至 294%),Pglom 降低了 13.1mmHg(95%CI,10.0 至 16.3)。在多元线性回归分析中,糖尿病(系数,10.1;95%CI,5.1 至 15.1)、BMI(每公斤体重增加 0.99;95%CI,0.38 至 1.59)和肾灌注压(每毫米汞柱增加 0.42;95%CI,0.25 至 0.59)与基线时的 Pglom 显著正相关。
我们基于近端肾内动脉压力和流速测量值构建了一个模型,该模型提供了肾小球压和入球及出球阻力的总体估计值。该模型为基于直接压力和流量测量评估 CKD 血流动力学提供了一种新的研究技术。
功能性 HEmodynamics 在有和没有肾动脉狭窄的患者中的研究(HERA),NL40795.018.12,在荷兰国家试验注册处(toetsingonline.nl)。