Šmejkal Libor, González-Hernández Rafael, Jungwirth T, Sinova J
Institut für Physik, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany.
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic.
Sci Adv. 2020 Jun 5;6(23):eaaz8809. doi: 10.1126/sciadv.aaz8809. eCollection 2020 Jun.
Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.
电子通常沿外加电场移动,在某些磁体中会获得无耗散的横向速度。这种自发霍尔效应早在一个多世纪前就被发现,它可以通过铁磁、非共线反铁磁或斯格明子形式的内部自旋结构破坏时间反演对称性来理解。在此,我们发现了一种先前被忽视的、由共线反铁磁性与非中心对称位置的非磁性原子相结合产生的稳健霍尔效应机制。我们预测在室温共线反铁磁体RuO中这种晶体霍尔效应的幅度很大,并基于对称规则列出了大量的候选材料家族。我们表明,晶体霍尔效应伴随着通过晶体手性控制其符号的可能性。我们说明,考虑完整的磁化密度分布而非简化的自旋结构,能为磁体中的对称性破缺现象带来新的见解,并为低耗散纳米电子学开辟一条替代途径。