Suppr超能文献

通过整合建模与实验研究微生物共培养中的代谢相互作用。

Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments.

作者信息

Ravikrishnan Aarthi, Blank Lars M, Srivastava Smita, Raman Karthik

机构信息

Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India.

Initiative for Biological Systems Engineering, IIT Madras, India.

出版信息

Comput Struct Biotechnol J. 2020 Mar 30;18:1249-1258. doi: 10.1016/j.csbj.2020.03.019. eCollection 2020.

Abstract

Microbial co-cultures have been used in several biotechnological applications. Within these co-cultures, the microorganisms tend to interact with each other and perform complex actions. Investigating metabolic interactions in microbial co-cultures is crucial in designing microbial consortia. Here, we present a pipeline integrating modelling and experimental approaches to understand metabolic interactions between organisms in a community. We define a new index named "Metabolic Support Index (MSI)", which quantifies the benefits derived by each organism in the presence of the other when grown as a co-culture. We computed MSI for several experimentally demonstrated co-cultures and showed that MSI, as a metric, accurately identifies the organism that derives the maximum benefit. We also computed MSI for a commonly used yeast co-culture consisting of and and observed that the latter derives higher benefit from the interaction. Further, we designed two-stage experiments to study mutual interactions and showed that indeed derives the maximum benefit from the interaction, as shown from our computational predictions. Also, using our previously developed computational tool MetQuest, we identified all the metabolic exchanges happening between these organisms by analysing the pathways spanning the two organisms. By analysing the HPLC profiles and studying the isotope labelling, we show that consumes the ethanol produced by when grown on glucose-rich medium under aerobic conditions, as also indicated by our pathway analyses. Our approach represents an important step in understanding metabolic interactions in microbial communities through an integrated computational and experimental workflow.

摘要

微生物共培养已应用于多种生物技术领域。在这些共培养体系中,微生物倾向于相互作用并执行复杂的行为。研究微生物共培养中的代谢相互作用对于设计微生物群落至关重要。在此,我们提出了一种整合建模和实验方法的流程,以了解群落中生物体之间的代谢相互作用。我们定义了一个名为“代谢支持指数(MSI)”的新指标,该指标量化了共培养时每种生物体在有其他生物体存在的情况下所获得的益处。我们计算了几种经实验验证的共培养体系的MSI,并表明作为一种度量标准,MSI能够准确识别出获得最大益处的生物体。我们还计算了由[具体菌种1]和[具体菌种2]组成的常用酵母共培养体系的MSI,发现后者从相互作用中获得了更高的益处。此外,我们设计了两阶段实验来研究相互作用,并表明正如我们的计算预测所示,[具体菌种2]确实从相互作用中获得了最大益处。而且,使用我们之前开发的计算工具MetQuest,通过分析跨越这两种生物体的代谢途径,我们确定了它们之间发生的所有代谢交换。通过分析高效液相色谱(HPLC)图谱并研究同位素标记,我们表明在有氧条件下于富含葡萄糖的培养基上生长时,[具体菌种2]消耗了[具体菌种1]产生的乙醇,这也得到了我们的代谢途径分析的证实。我们的方法代表了通过综合计算和实验工作流程来理解微生物群落中代谢相互作用的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4af/7286961/fb7d9f0a047b/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验