Levy Roie, Carr Rogan, Kreimer Anat, Freilich Shiri, Borenstein Elhanan
Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
Department of Electrical Engineering & Computer Science, Center for Computational Biology, UC Berkeley, Berkeley, CA, 94720, USA.
BMC Bioinformatics. 2015 May 17;16(1):164. doi: 10.1186/s12859-015-0588-y.
Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.
NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.
The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.
宿主-微生物以及微生物-微生物之间的相互作用通常由代谢物的复杂交换所支配。此类相互作用在决定致病物种和共生物种影响其宿主的方式以及复杂微生物群落的组装过程中起着关键作用。最近,多项研究已经证明了此类相互作用如何在相互作用物种的代谢网络组织中得到体现,并引入了各种基于图论的方法来直接从网络拓扑结构预测宿主-微生物以及微生物-微生物之间的相互作用。通过使用这些方法,此类研究揭示了塑造物种相互作用和群落组装的进化和生态过程,突出了这种反向生态学研究范式的潜力。
NetCooperate是一个基于网络的工具和软件包,用于确定宿主-微生物以及微生物-微生物之间的合作潜力。它专门计算两个先前开发并经过验证的物种相互作用指标:生物合成支持分数,该分数量化宿主物种满足寄生或共生物种营养需求的能力;以及代谢互补指数,该指数量化一对微生物生物体生态位的互补性。NetCooperate将一对代谢网络作为输入,并返回成对指标以及潜在的合成代谢化合物列表。
生物合成支持分数和代谢互补指数为宿主-微生物以及微生物-微生物之间的代谢相互作用提供了见解。NetCooperate从代谢网络拓扑结构确定这些相互作用指数,可用于小规模或大规模分析。NetCooperate既作为基于网络的工具提供,也作为开源Python模块提供;两者均可在http://elbo.gs.washington.edu/software_netcooperate.html免费在线获取。