Suppr超能文献

光化学相变能够为提升热能的高能分子太阳能热电池共同收集光子能量和环境热量。

Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy.

作者信息

Zhang Zhao-Yang, He Yixin, Wang Zhihang, Xu Jiale, Xie Mingchen, Tao Peng, Ji Deyang, Moth-Poulsen Kasper, Li Tao

机构信息

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.

出版信息

J Am Chem Soc. 2020 Jul 15;142(28):12256-12264. doi: 10.1021/jacs.0c03748. Epub 2020 Jul 2.

Abstract

Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions-a photochemistry-thermophysics coupled regime-for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches. Integrating the two forms of energy in single-component molecular materials is capable of providing energy capacity beyond that of traditional solar or thermal energy storage systems based solely on molecular photoisomerization or phase change, respectively. Significantly, the ambient heat that is harvested during photochemical melting into liquid of the low-melting-point, metastable isomer can be released as high-temperature heat by recrystallization of the high-melting-point, parent isomer. This reveals that photon energy drives the upgrading of thermal energy in such a hybrid energy system. Rationally designed small-molecule azo switches achieve high gravimetric energy densities of 0.3-0.4 MJ/kg with long-term storage stability. Rechargeable solar thermal battery devices are fabricated, which upon light triggering provide gravimetric power density of about 2.7 kW/kg and temperature increases of >20 °C in ambient environment. We further show their use as deicing coatings. Our work demonstrates a new concept of energy utilization-combining solar energy and low-grade heat into higher-grade heat-which unlocks the possibility of developing sustainable energy systems powered by a combination of natural sunlight and ambient heat.

摘要

发现从环境中同时收集多种形式能量的物理化学原理将推动当前的可持续能源技术发展。在此,我们探索光化学相变——一种光化学与热物理学耦合机制——用于太阳能和热能的共同收集。具体而言,我们表明光子能量和环境热量可以一起存储,并根据需要以高温热的形式释放,这是通过工程化分子光开关在室温下的光化学晶体↔液体转变实现的。将这两种能量形式整合到单一组分分子材料中,能够提供超越传统太阳能或热能存储系统的能量容量,传统系统分别仅基于分子光异构化或相变。值得注意的是,在光化学作用下低熔点、亚稳异构体熔化成液体时收集的环境热量,可以通过高熔点母体异构体的重结晶以高温热的形式释放。这表明在这种混合能源系统中光子能量驱动了热能的升级。合理设计的小分子偶氮开关实现了0.3 - 0.4 MJ/kg的高重量能量密度以及长期存储稳定性。制造了可充电太阳能热电池装置,在光照触发下,其在环境中提供约2.7 kW/kg的重量功率密度和>20°C的温度升高。我们还展示了它们作为除冰涂层的用途。我们的工作展示了一种新的能量利用概念——将太阳能和低品位热量结合成高品位热量——这开启了开发由自然阳光和环境热量组合驱动的可持续能源系统的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验