Chen Jie, Kou Yan, Zhang Shihui, Zhang Xinyu, Liu Hanqing, Yan Huiming, Shi Quan
Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202400759. doi: 10.1002/anie.202400759. Epub 2024 Mar 7.
Solar thermal fuels (STFs) have been particularly concerned as sustainable future energy due to their impressive ability to store solar energy in chemical bonds and controllably release thermal energy. However, currently studied STFs mainly focus on molecule-based materials with high photochemical activity, toxicity, and compromised features, which greatly restricts their applications in practical scenarios of solar energy utilization. Herein, we present a novel erythritol-based composite phase change material (PCM) as a new type of STFs with an outstanding capability to store solar energy as latent heat in its stable supercooling state and release thermal energy as needed. This composite PCM with stored thermal energy can be maintained stably at room temperature and subsequently release latent heat as high as 224.9 J/g during the crystallization process triggered by thermal stimuli. Remarkably, solar energy can be converted into latent heat stored in the composite PCM over months. Through mechanical stimulations, the released latent heat can increase the temperature of the composite up to 91 °C. This work presents a new concept of using spatiotemporal storage and release of latent heat in PCMs for solar energy utilization, making it a potential candidate as STFs for developing future clean energy techniques.
太阳能热燃料(STFs)因其在化学键中存储太阳能并可控地释放热能的出色能力,作为可持续的未来能源而备受关注。然而,目前研究的太阳能热燃料主要集中在具有高光化学活性、毒性和其他缺陷的分子基材料上,这极大地限制了它们在太阳能利用实际场景中的应用。在此,我们提出了一种新型的基于赤藓糖醇的复合相变材料(PCM),作为一种新型的太阳能热燃料,它具有卓越的能力,能够在其稳定的过冷状态下以潜热形式存储太阳能,并根据需要释放热能。这种存储了热能的复合相变材料在室温下可以稳定保存,随后在热刺激引发的结晶过程中释放高达224.9 J/g的潜热。值得注意的是,太阳能可以在数月时间内转化为存储在复合相变材料中的潜热。通过机械刺激,释放出的潜热可使复合材料的温度升高至91 °C。这项工作提出了一种利用相变材料中潜热的时空存储和释放来进行太阳能利用的新概念,使其成为开发未来清洁能源技术的太阳能热燃料的潜在候选材料。