Suppr超能文献

使用扩展紧束缚方法对用于太阳能存储的偶氮苯进行半自动筛选。

Semi-automated screening of azobezenes for solar energy storage using extended tight binding methods.

作者信息

Schjelde Karoline, Obel Oscar B, Hillers-Bendtsen Andreas Erbs, Mikkelsen Kurt V

机构信息

Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark.

出版信息

Sci Rep. 2025 Jul 1;15(1):20750. doi: 10.1038/s41598-025-99925-6.

Abstract

In the face of the pressing climate change crisis, Molecular Solar Thermal Energy Storage (MOST) Systems offer a promising avenue for efficient energy storage. This study focuses on the potential of systems based on azobenzene and gives a comprehensive framework for assessing unique azobenzene variations for MOST applications. A high-throughput screening process, underpinned by semi-empirical extended tight binding methods, has been developed to enable exploration of the vast chemical space of azobenzenes. The codebase for the established screening procedure, including methodologies and tools, is organized and shared through a GitHub repository ensuring transparency and reproducibility. We test our high throughput screening procedure on 37,729 azobenzene derivatives and highlight that it is robust enough to facilitate subsequent studies that will dive deeper into the potential of azobenzenes in MOST applications. Future endeavors will focus on expanding the dataset, correlating energies with higher-level calculations, and harnessing advanced statistical and machine learning techniques to optimize the selection and performance of azobenzenes in MOST systems.

摘要

面对紧迫的气候变化危机,分子太阳能热能存储(MOST)系统为高效储能提供了一条充满希望的途径。本研究聚焦于基于偶氮苯的系统的潜力,并给出了一个用于评估MOST应用中独特偶氮苯变体的综合框架。一种基于半经验扩展紧束缚方法的高通量筛选过程已被开发出来,以探索偶氮苯广阔的化学空间。已建立的筛选程序的代码库,包括方法和工具,通过一个GitHub仓库进行组织和共享,以确保透明度和可重复性。我们在37729种偶氮苯衍生物上测试了我们的高通量筛选程序,并强调它足够强大,能够促进后续研究,这些研究将更深入地探究偶氮苯在MOST应用中的潜力。未来的工作将集中在扩大数据集、将能量与更高层次的计算相关联,以及利用先进的统计和机器学习技术来优化MOST系统中偶氮苯的选择和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e393/12216760/82b78febfa94/41598_2025_99925_Fig1_HTML.jpg

相似文献

2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
4
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
6
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2017 May 23;5(5):CD011425. doi: 10.1002/14651858.CD011425.pub2.
9
Effectiveness and safety of vitamin D in relation to bone health.
Evid Rep Technol Assess (Full Rep). 2007 Aug(158):1-235.
10
Incentives for preventing smoking in children and adolescents.
Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3.

本文引用的文献

1
Searching the Chemical Space of Bicyclic Dienes for Molecular Solar Thermal Energy Storage Candidates.
Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202309543. doi: 10.1002/anie.202309543. Epub 2023 Aug 29.
2
High throughput screening of norbornadiene/quadricyclane derivates for molecular solar thermal energy storage.
Phys Chem Chem Phys. 2022 Dec 7;24(47):28956-28964. doi: 10.1039/d2cp03032b.
3
Solving the Azobenzene Entropy Puzzle: Direct Evidence for Multi-State Reactivity.
J Phys Chem Lett. 2022 Nov 24;13(46):10882-10888. doi: 10.1021/acs.jpclett.2c02838. Epub 2022 Nov 17.
4
Azobenzene-Based Solar Thermal Fuels: A Review.
Nanomicro Lett. 2022 Jun 29;14(1):138. doi: 10.1007/s40820-022-00876-8.
5
Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump.
Nat Nanotechnol. 2022 Jul;17(7):746-751. doi: 10.1038/s41565-022-01151-y. Epub 2022 Jun 27.
6
Status and challenges for molecular solar thermal energy storage system based devices.
Chem Soc Rev. 2022 Aug 30;51(17):7313-7326. doi: 10.1039/d1cs00890k.
7
Light-Powered Dissipative Assembly of Diazocine Coordination Cages.
J Am Chem Soc. 2022 Feb 23;144(7):3099-3105. doi: 10.1021/jacs.1c12011. Epub 2022 Jan 26.
8
An Incremental System To Predict the Effect of Different London Dispersion Donors in All-meta-Substituted Azobenzenes.
Chemistry. 2022 Feb 24;28(12):e202104284. doi: 10.1002/chem.202104284. Epub 2022 Feb 1.
10
Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):1940-1949. doi: 10.1021/acsami.1c19819. Epub 2021 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验