Schjelde Karoline, Obel Oscar B, Hillers-Bendtsen Andreas Erbs, Mikkelsen Kurt V
Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark.
Sci Rep. 2025 Jul 1;15(1):20750. doi: 10.1038/s41598-025-99925-6.
In the face of the pressing climate change crisis, Molecular Solar Thermal Energy Storage (MOST) Systems offer a promising avenue for efficient energy storage. This study focuses on the potential of systems based on azobenzene and gives a comprehensive framework for assessing unique azobenzene variations for MOST applications. A high-throughput screening process, underpinned by semi-empirical extended tight binding methods, has been developed to enable exploration of the vast chemical space of azobenzenes. The codebase for the established screening procedure, including methodologies and tools, is organized and shared through a GitHub repository ensuring transparency and reproducibility. We test our high throughput screening procedure on 37,729 azobenzene derivatives and highlight that it is robust enough to facilitate subsequent studies that will dive deeper into the potential of azobenzenes in MOST applications. Future endeavors will focus on expanding the dataset, correlating energies with higher-level calculations, and harnessing advanced statistical and machine learning techniques to optimize the selection and performance of azobenzenes in MOST systems.
面对紧迫的气候变化危机,分子太阳能热能存储(MOST)系统为高效储能提供了一条充满希望的途径。本研究聚焦于基于偶氮苯的系统的潜力,并给出了一个用于评估MOST应用中独特偶氮苯变体的综合框架。一种基于半经验扩展紧束缚方法的高通量筛选过程已被开发出来,以探索偶氮苯广阔的化学空间。已建立的筛选程序的代码库,包括方法和工具,通过一个GitHub仓库进行组织和共享,以确保透明度和可重复性。我们在37729种偶氮苯衍生物上测试了我们的高通量筛选程序,并强调它足够强大,能够促进后续研究,这些研究将更深入地探究偶氮苯在MOST应用中的潜力。未来的工作将集中在扩大数据集、将能量与更高层次的计算相关联,以及利用先进的统计和机器学习技术来优化MOST系统中偶氮苯的选择和性能。