Suppr超能文献

迈向认知科学中有原则的贝叶斯工作流程。

Toward a principled Bayesian workflow in cognitive science.

作者信息

Schad Daniel J, Betancourt Michael, Vasishth Shravan

机构信息

Research Focus Cognitive Sciences, University of Potsdam.

Symplectomorphic.

出版信息

Psychol Methods. 2021 Feb;26(1):103-126. doi: 10.1037/met0000275. Epub 2020 Jun 18.

Abstract

Experiments in research on memory, language, and in other areas of cognitive science are increasingly being analyzed using Bayesian methods. This has been facilitated by the development of probabilistic programming languages such as Stan, and easily accessible front-end packages such as brms. The utility of Bayesian methods, however, ultimately depends on the relevance of the Bayesian model, in particular whether or not it accurately captures the structure of the data and the data analyst's domain expertise. Even with powerful software, the analyst is responsible for verifying the utility of their model. To demonstrate this point, we introduce a principled Bayesian workflow (Betancourt, 2018) to cognitive science. Using a concrete working example, we describe basic questions one should ask about the model: prior predictive checks, computational faithfulness, model sensitivity, and posterior predictive checks. The running example for demonstrating the workflow is data on reading times with a linguistic manipulation of object versus subject relative clause sentences. This principled Bayesian workflow also demonstrates how to use domain knowledge to inform prior distributions. It provides guidelines and checks for valid data analysis, avoiding overfitting complex models to noise, and capturing relevant data structure in a probabilistic model. Given the increasing use of Bayesian methods, we aim to discuss how these methods can be properly employed to obtain robust answers to scientific questions. All data and code accompanying this article are available from https://osf.io/b2vx9/. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

在记忆、语言及认知科学其他领域的研究实验中,越来越多地使用贝叶斯方法进行分析。诸如Stan等概率编程语言以及brms等易于使用的前端软件包的开发推动了这一进程。然而,贝叶斯方法的效用最终取决于贝叶斯模型的相关性,特别是它是否准确捕捉了数据结构和数据分析师的领域专业知识。即使有强大的软件,分析师仍有责任验证其模型的效用。为了说明这一点,我们向认知科学领域引入一种有原则的贝叶斯工作流程(贝当古,2018年)。通过一个具体的实际例子,我们描述了关于模型应该提出的基本问题:先验预测检验、计算忠实性、模型敏感性和后验预测检验。用于演示该工作流程的实例是关于阅读时间的数据,这些数据涉及对宾语与主语关系从句句子的语言操作。这种有原则的贝叶斯工作流程还展示了如何利用领域知识来确定先验分布。它为有效的数据分析提供了指导方针和检验方法,避免将复杂模型过度拟合于噪声,并在概率模型中捕捉相关的数据结构。鉴于贝叶斯方法的使用日益增加,我们旨在讨论如何正确运用这些方法以获得对科学问题的可靠答案。本文附带的所有数据和代码可从https://osf.io/b2vx9/获取。(《心理学文摘数据库记录》(c)2021美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验