Suppr超能文献

认知模型贝叶斯分析中的三个案例研究。

Three case studies in the Bayesian analysis of cognitive models.

作者信息

Lee Michael D

机构信息

Department of Cognitive Sciences, University of California, Irvine, California 92697-5100, USA.

出版信息

Psychon Bull Rev. 2008 Feb;15(1):1-15. doi: 10.3758/pbr.15.1.1.

Abstract

Bayesian statistical inference offers a principled and comprehensive approach for relating psychological models to data. This article presents Bayesian analyses of three influential psychological models: multidimensional scaling models of stimulus representation, the generalized context model of category learning, and a signal detection theory model of decision making. In each case, the model is recast as a probabilistic graphical model and is evaluated in relation to a previously considered data set. In each case, it is shown that Bayesian inference is able to provide answers to important theoretical and empirical questions easily and coherently. The generality of the Bayesian approach and its potential for the understanding of models and data in psychology are discussed.

摘要

贝叶斯统计推断为将心理模型与数据联系起来提供了一种有原则且全面的方法。本文展示了对三种有影响力的心理模型的贝叶斯分析:刺激表征的多维缩放模型、类别学习的广义情境模型以及决策的信号检测理论模型。在每种情况下,该模型都被重塑为概率图模型,并根据先前考虑的数据集进行评估。在每种情况下,结果表明贝叶斯推断能够轻松且连贯地为重要的理论和实证问题提供答案。文中还讨论了贝叶斯方法的通用性及其在理解心理学模型和数据方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验