Suppr超能文献

双源双能 CT 噪声优化线性融合图像与噪声优化虚拟单能量图像在冠状静脉评估中的比较。

Comparison of noise-optimized linearly blended images and noise-optimized virtual monoenergetic images evaluated by dual-source, dual-energy CT in cardiac vein assessment.

机构信息

Department of Radiology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea.

Department of Radiology, Pusan National University Hospital, Busan, Republic of Korea.

出版信息

Acta Radiol. 2021 May;62(5):594-602. doi: 10.1177/0284185120933242. Epub 2020 Jun 19.

Abstract

BACKGROUND

The coronary venous system is frequently used as an entry route to the heart and treatment modalities for many cardiac diseases and many procedures. Consequently, evaluation of the coronary venous system and understanding cardiac vein anatomy is crucial.

PURPOSE

To determine the optimal image set in a comparison of noise-optimized linearly blended images (F_0.6) and noise-optimized virtual monoenergetic images (VMI+) evaluated by dual-energy computed tomography (DECT) for cardiac vein assessment.

MATERIAL AND METHODS

Thirty-four patients (mean age 58.2 ± 14.2 years) who underwent DECT due to chest pain were enrolled. Images were post-processed with the F_0.6, and VMI+ algorithms at energy levels in the range of 40-100 keV in 10-keV increments. Enhancement (HU), noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively measured at two points in the great cardiac vein by consensus of two radiologists. Two blinded observers evaluated the subjective image quality of the great cardiac vein on a 4-point scale.

RESULTS

HU, noise, and SNR peaked at 40 keV VMI+ ( < 0.05) among 50-100 keV VMI+. CNR peaked at 100 keV VMI+; however, there were no significant differences compared to CNR images processed at 40-90 keV VMI+. HU and noise were significantly higher in 40 keV VMI+ than F_0.6 images; however, both SNR and CNR were significantly higher in F_0.6 images. An assessment of subjective vein delineation revealed that F_0.6 images had the highest scores.

CONCLUSION

F_0.6 images were superior to VMI+ and provided the optimal image set for cardiac vein assessment.

摘要

背景

冠状动脉系统常被用作进入心脏的途径,也是许多心脏疾病和多种治疗方法的治疗途径。因此,评估冠状动脉系统和了解心脏静脉解剖结构至关重要。

目的

通过比较噪声优化线性混合图像(F_0.6)和噪声优化虚拟单能量图像(VMI+),确定双能 CT(DECT)评估心脏静脉时的最佳图像集。

材料和方法

本研究共纳入 34 例因胸痛而行 DECT 检查的患者(平均年龄 58.2±14.2 岁)。使用 F_0.6 和 VMI+算法对图像进行后处理,能量范围为 40-100keV,每隔 10keV 一个能级。两位放射科医生对共识后得出的大心脏静脉的两个点进行增强(HU)、噪声、信噪比(SNR)和对比噪声比(CNR)的客观测量。两位观察者对大心脏静脉的主观图像质量进行 4 分制评估。

结果

在 50-100keV 的 VMI+中,HU、噪声和 SNR 在 40keV 的 VMI+中达到峰值(<0.05)。CNR 在 100keV 的 VMI+中达到峰值;然而,与 40-90keV 的 VMI+处理的 CNR 图像相比,没有显著差异。40keV 的 VMI+的 HU 和噪声显著高于 F_0.6 图像;然而,F_0.6 图像的 SNR 和 CNR 显著更高。对静脉勾画的主观评估显示,F_0.6 图像的评分最高。

结论

F_0.6 图像优于 VMI+,为心脏静脉评估提供了最佳图像集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验