Suppr超能文献

基于嵌套病例对照研究数据的半竞争风险估计与推断。

Estimation and inference for semi-competing risks based on data from a nested case-control study.

作者信息

Jazić Ina, Lee Stephanie, Haneuse Sebastien

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

出版信息

Stat Methods Med Res. 2020 Nov;29(11):3326-3339. doi: 10.1177/0962280220926219. Epub 2020 Jun 17.

Abstract

In semi-competing risks, the occurrence of some non-terminal event is subject to a terminal event, usually death. While existing methods for semi-competing risks data analysis assume complete information on all relevant covariates, data on at least one covariate are often not readily available in practice. In this setting, for standard univariate time-to-event analyses, researchers may choose from several strategies for sub-sampling patients on whom to collect complete data, including the nested case-control study design. Here, we consider a semi-competing risks analysis through the reuse of data from an existing nested case-control study for which risk sets were formed based on either the non-terminal or the terminal event. Additionally, we introduce the in which detailed data are collected on additional events of the other type. We propose estimation with respect to a frailty illness-death model through maximum weighted likelihood, specifying the baseline hazard functions either parametrically or semi-parametrically via B-splines. Two standard error estimators are proposed: (i) a computationally simple sandwich estimator and (ii) an estimator based on a perturbation resampling procedure. We derive the asymptotic properties of the proposed methods and evaluate their small-sample properties via simulation. The designs/methods are illustrated with an investigation of risk factors for acute graft-versus-host disease among  = 8838 patients undergoing hematopoietic stem cell transplantation, for which death is a significant competing risk.

摘要

在半竞争风险中,某些非终末事件的发生受到终末事件(通常是死亡)的影响。虽然现有的半竞争风险数据分析方法假定所有相关协变量的信息是完整的,但在实际中,至少有一个协变量的数据往往难以获得。在这种情况下,对于标准的单变量事件发生时间分析,研究人员可以从几种对患者进行子抽样以收集完整数据的策略中进行选择,包括巢式病例对照研究设计。在此,我们考虑通过重新利用来自现有巢式病例对照研究的数据进行半竞争风险分析,该研究的风险集是基于非终末事件或终末事件形成的。此外,我们引入了一种设计,即针对另一种类型的额外事件收集详细数据。我们提出通过最大加权似然法对脆弱疾病 - 死亡模型进行估计,通过B样条以参数化或半参数化方式指定基线风险函数。提出了两种标准误差估计器:(i)一种计算简单的三明治估计器和(ii)一种基于扰动重采样程序的估计器。我们推导了所提出方法的渐近性质,并通过模拟评估了它们的小样本性质。通过对8838例接受造血干细胞移植患者的急性移植物抗宿主病危险因素进行调查,对这些设计/方法进行了说明,在该研究中死亡是一个显著的竞争风险。

相似文献

1
Estimation and inference for semi-competing risks based on data from a nested case-control study.
Stat Methods Med Res. 2020 Nov;29(11):3326-3339. doi: 10.1177/0962280220926219. Epub 2020 Jun 17.
2
Design and analysis of nested case-control studies for recurrent events subject to a terminal event.
Stat Med. 2019 Sep 30;38(22):4348-4362. doi: 10.1002/sim.8302. Epub 2019 Jul 9.
4
A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data.
Scand Stat Theory Appl. 2017 Mar;44(1):112-129. doi: 10.1111/sjos.12244. Epub 2016 Aug 31.
6
Penalized estimation of frailty-based illness-death models for semi-competing risks.
Biometrics. 2023 Sep;79(3):1657-1669. doi: 10.1111/biom.13761. Epub 2022 Oct 24.
7
Frailty modelling approaches for semi-competing risks data.
Lifetime Data Anal. 2020 Jan;26(1):109-133. doi: 10.1007/s10985-019-09464-2. Epub 2019 Feb 7.
8
Bias reduction for semi-competing risks frailty model with rare events: application to a chronic kidney disease cohort study in South Korea.
Lifetime Data Anal. 2024 Apr;30(2):310-326. doi: 10.1007/s10985-023-09612-9. Epub 2023 Nov 13.
9
Crude incidence in two-phase designs in the presence of competing risks.
BMC Med Res Methodol. 2016 Jan 11;16:5. doi: 10.1186/s12874-015-0103-1.
10
An augmented illness-death model for semi-competing risks with clinically immediate terminal events.
Stat Med. 2024 Sep 20;43(21):4194-4211. doi: 10.1002/sim.10181. Epub 2024 Jul 22.

引用本文的文献

本文引用的文献

1
Estimating cross quantile residual ratio with left-truncated semi-competing risks data.
Lifetime Data Anal. 2018 Oct;24(4):652-674. doi: 10.1007/s10985-017-9412-5. Epub 2017 Nov 23.
2
Mitigating Bias in Generalized Linear Mixed Models: The Case for Bayesian Nonparametrics.
Stat Sci. 2016 Feb;31(1):80-95. doi: 10.1214/15-STS533. Epub 2016 Feb 10.
3
A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data.
Scand Stat Theory Appl. 2017 Mar;44(1):112-129. doi: 10.1111/sjos.12244. Epub 2016 Aug 31.
4
Accelerated failure time models for semi-competing risks data in the presence of complex censoring.
Biometrics. 2017 Dec;73(4):1401-1412. doi: 10.1111/biom.12696. Epub 2017 Apr 10.
5
Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer.
J Am Stat Assoc. 2016;111(515):1075-1095. doi: 10.1080/01621459.2016.1164052. Epub 2016 Oct 18.
6
Beyond Composite Endpoints Analysis: Semicompeting Risks as an Underutilized Framework for Cancer Research.
J Natl Cancer Inst. 2016 Jul 5;108(12). doi: 10.1093/jnci/djw154. Print 2016 Dec.
7
Semi-Competing Risks Data Analysis: Accounting for Death as a Competing Risk When the Outcome of Interest Is Nonterminal.
Circ Cardiovasc Qual Outcomes. 2016 May;9(3):322-31. doi: 10.1161/CIRCOUTCOMES.115.001841. Epub 2016 Apr 12.
8
Using the whole cohort in the analysis of countermatched samples.
Biometrics. 2016 Jun;72(2):382-91. doi: 10.1111/biom.12419. Epub 2015 Sep 22.
10
Identification and estimation of survivor average causal effects.
Stat Med. 2014 Sep 20;33(21):3601-28. doi: 10.1002/sim.6181. Epub 2014 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验