Suppr超能文献

将半竞争风险数据建模为纵向双变量过程。

Modeling semi-competing risks data as a longitudinal bivariate process.

机构信息

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.

Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.

Abstract

As individuals age, death is a competing risk for Alzheimer's disease (AD) but the reverse is not the case. As such, studies of AD can be placed within the semi-competing risks framework. Central to semi-competing risks, and in contrast to standard competing risks , is that one can learn about the dependence structure between the two events. To-date, however, most methods for semi-competing risks treat dependence as a nuisance and not a potential source of new clinical knowledge. We propose a novel regression-based framework that views the two time-to-event outcomes through the lens of a longitudinal bivariate process on a partition of the time scales of the two events. A key innovation of the framework is that dependence is represented in two distinct forms, local and global dependence, both of which have intuitive clinical interpretations. Estimation and inference are performed via penalized maximum likelihood, and can accommodate right censoring, left truncation, and time-varying covariates. An important consequence of the partitioning of the time scale is that an ambiguity regarding the specific form of the likelihood contribution may arise; a strategy for sensitivity analyses regarding this issue is described. The framework is then used to investigate the role of gender and having ≥1 apolipoprotein E (APOE) ε4 allele on the joint risk of AD and death using data from the Adult Changes in Thought study.

摘要

随着个体年龄的增长,死亡是阿尔茨海默病(AD)的竞争风险,但反之则不然。因此,AD 的研究可以置于半竞争风险框架内。半竞争风险的核心是,与标准竞争风险不同,人们可以了解两个事件之间的依赖结构。然而,迄今为止,大多数半竞争风险方法将依赖视为一种麻烦,而不是潜在的新临床知识来源。我们提出了一种新颖的基于回归的框架,通过将两个事件时间尺度的分区上的纵向双变量过程的视角来看待两个事件时间到事件的结果。该框架的一个关键创新是,依赖以两种不同的形式表示,局部依赖和全局依赖,这两种形式都具有直观的临床解释。估计和推断是通过惩罚最大似然来进行的,可以容纳右删失、左截断和时变协变量。时间尺度分区的一个重要后果是,关于似然贡献的具体形式可能会出现歧义;描述了针对该问题的敏感性分析策略。然后,该框架用于使用来自成人思维变化研究的数据,研究性别和载脂蛋白 E (APOE) ε4 等位基因≥1对 AD 和死亡联合风险的作用。

相似文献

1
Modeling semi-competing risks data as a longitudinal bivariate process.
Biometrics. 2022 Sep;78(3):922-936. doi: 10.1111/biom.13480. Epub 2021 May 18.
2
Causal inference for semi-competing risks data.
Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.
3
Accelerated failure time models for semi-competing risks data in the presence of complex censoring.
Biometrics. 2017 Dec;73(4):1401-1412. doi: 10.1111/biom.12696. Epub 2017 Apr 10.
4
Short leukocyte telomeres predict 25-year Alzheimer's disease incidence in non-APOE ε4-carriers.
Alzheimers Res Ther. 2021 Jul 15;13(1):130. doi: 10.1186/s13195-021-00871-y.
7
Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: A Meta-analysis.
JAMA Neurol. 2017 Oct 1;74(10):1178-1189. doi: 10.1001/jamaneurol.2017.2188.
8
Penalized estimation of frailty-based illness-death models for semi-competing risks.
Biometrics. 2023 Sep;79(3):1657-1669. doi: 10.1111/biom.13761. Epub 2022 Oct 24.
10
Association of apolipoprotein E genetic variation in Alzheimer's disease in Indian population: a meta-analysis.
Am J Alzheimers Dis Other Demen. 2014 Nov;29(7):575-82. doi: 10.1177/1533317514531443.

引用本文的文献

1
Causal inference for semi-competing risks data.
Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.

本文引用的文献

1
Causal inference for semi-competing risks data.
Biostatistics. 2022 Oct 14;23(4):1115-1132. doi: 10.1093/biostatistics/kxab049.
2
Regression Models and Multivariate Life Tables.
J Am Stat Assoc. 2021;116(535):1330-1345. doi: 10.1080/01621459.2020.1713792. Epub 2020 Feb 10.
3
Estimation and inference for semi-competing risks based on data from a nested case-control study.
Stat Methods Med Res. 2020 Nov;29(11):3326-3339. doi: 10.1177/0962280220926219. Epub 2020 Jun 17.
4
Time-to-event analysis when the event is defined on a finite time interval.
Stat Methods Med Res. 2020 Jun;29(6):1573-1591. doi: 10.1177/0962280219869364. Epub 2019 Aug 22.
5
Joint Shock/Death Risk Prediction Model for Patients Considering Implantable Cardioverter-Defibrillators.
Circ Cardiovasc Qual Outcomes. 2019 Aug;12(8):e005675. doi: 10.1161/CIRCOUTCOMES.119.005675. Epub 2019 Aug 15.
6
A novel calibration framework for survival analysis when a binary covariate is measured at sparse time points.
Biostatistics. 2020 Apr 1;21(2):e148-e163. doi: 10.1093/biostatistics/kxy063.
7
Accelerated failure time models for semi-competing risks data in the presence of complex censoring.
Biometrics. 2017 Dec;73(4):1401-1412. doi: 10.1111/biom.12696. Epub 2017 Apr 10.
8
Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer.
J Am Stat Assoc. 2016;111(515):1075-1095. doi: 10.1080/01621459.2016.1164052. Epub 2016 Oct 18.
9
Beyond Composite Endpoints Analysis: Semicompeting Risks as an Underutilized Framework for Cancer Research.
J Natl Cancer Inst. 2016 Jul 5;108(12). doi: 10.1093/jnci/djw154. Print 2016 Dec.
10
Semi-Competing Risks Data Analysis: Accounting for Death as a Competing Risk When the Outcome of Interest Is Nonterminal.
Circ Cardiovasc Qual Outcomes. 2016 May;9(3):322-31. doi: 10.1161/CIRCOUTCOMES.115.001841. Epub 2016 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验