Suppr超能文献

预警评分验证方法学和性能指标的系统评价。

Early warning score validation methodologies and performance metrics: a systematic review.

机构信息

Bedok Polyclinic, SingHealth Polyclinics, Singapore, Singapore.

Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore.

出版信息

BMC Med Inform Decis Mak. 2020 Jun 18;20(1):111. doi: 10.1186/s12911-020-01144-8.

Abstract

BACKGROUND

Early warning scores (EWS) have been developed as clinical prognostication tools to identify acutely deteriorating patients. In the past few years, there has been a proliferation of studies that describe the development and validation of novel machine learning-based EWS. Systematic reviews of published studies which focus on evaluating performance of both well-established and novel EWS have shown conflicting conclusions. A possible reason is the heterogeneity in validation methods applied. In this review, we aim to examine the methodologies and metrics used in studies which perform EWS validation.

METHODS

A systematic review of all eligible studies from the MEDLINE database and other sources, was performed. Studies were eligible if they performed validation on at least one EWS and reported associations between EWS scores and inpatient mortality, intensive care unit (ICU) transfers, or cardiac arrest (CA) of adults. Two reviewers independently did a full-text review and performed data abstraction by using standardized data-worksheet based on the TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) checklist. Meta-analysis was not performed due to heterogeneity.

RESULTS

The key differences in validation methodologies identified were (1) validation dataset used, (2) outcomes of interest, (3) case definition, time of EWS use and aggregation methods, and (4) handling of missing values. In terms of case definition, among the 48 eligible studies, 34 used the patient episode case definition while 12 used the observation set case definition, and 2 did the validation using both case definitions. Of those that used the patient episode case definition, 18 studies validated the EWS at a single point of time, mostly using the first recorded observation. The review also found more than 10 different performance metrics reported among the studies.

CONCLUSIONS

Methodologies and performance metrics used in studies performing validation on EWS were heterogeneous hence making it difficult to interpret and compare EWS performance. Standardizing EWS validation methodology and reporting can potentially address this issue.

摘要

背景

早期预警评分(EWS)已被开发为临床预后工具,以识别病情急剧恶化的患者。在过去的几年中,已经有大量研究描述了新型基于机器学习的 EWS 的开发和验证。对已发表的研究进行的系统评价集中评估了成熟和新型 EWS 的性能,得出了相互矛盾的结论。一个可能的原因是应用的验证方法存在异质性。在本综述中,我们旨在检查用于进行 EWS 验证的研究中的方法和指标。

方法

对 MEDLINE 数据库和其他来源的所有合格研究进行了系统评价。如果研究至少对一种 EWS 进行了验证,并报告了 EWS 评分与住院患者死亡率、重症监护病房(ICU)转科或心脏骤停(CA)之间的相关性,则研究合格。两名审查员独立进行全文审查,并使用基于 TRIPOD(个体预后或诊断的多变量预测模型的透明报告)清单的标准化数据工作表进行数据提取。由于存在异质性,未进行荟萃分析。

结果

确定的验证方法学的主要差异包括(1)验证数据集的使用,(2)感兴趣的结果,(3)病例定义,EWS 使用和聚合方法的时间,以及(4)缺失值的处理。就病例定义而言,在 48 项合格研究中,34 项使用了患者发病例定义,12 项使用了观察集病例定义,2 项使用了两种病例定义进行验证。在使用患者发病例定义的研究中,有 18 项研究在单个时间点验证了 EWS,主要使用首次记录的观察值。该综述还发现,研究中报告了 10 多种不同的性能指标。

结论

对 EWS 进行验证的研究中使用的方法学和性能指标存在异质性,因此难以解释和比较 EWS 的性能。标准化 EWS 验证方法和报告可能会解决这个问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71e6/7301488/b45eb72d73dd/12911_2020_1144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验