Sim Taeyong, Cho Eun Young, Kim Ji-Hyun, Lee Kyung Hyun, Kim Kwang Joon, Hahn Sangchul, Ha Eun Yeong, Yun Eunkyeong, Kim In-Cheol, Park Sun Hyo, Cho Chi-Heum, Yu Gyeong Im, Ahn Byung Eun, Jeong Yeeun, Won Joo-Yun, Cho Hochan, Lee Ki-Byung
AITRICS Corp., Seoul, Korea.
Division of Geriatrics, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
Acute Crit Care. 2025 May;40(2):197-208. doi: 10.4266/acc.000525. Epub 2025 May 30.
Acute deterioration of patients in general wards often leads to major adverse events (MAEs), including unplanned intensive care unit transfers, cardiac arrest, or death. Traditional early warning scores (EWSs) have shown limited predictive accuracy, with frequent false positives. We conducted a prospective observational external validation study of an artificial intelligence (AI)-based EWS, the VitalCare - Major Adverse Event Score (VC-MAES), at a tertiary medical center in the Republic of Korea.
Adult patients from general wards, including internal medicine (IM) and obstetrics and gynecology (OBGYN)-the latter were rarely investigated in prior AI-based EWS studies-were included. The VC-MAES predictions were compared with National Early Warning Score (NEWS) and Modified Early Warning Score (MEWS) predictions using the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and logistic regression for baseline EWS values. False-positives per true positive (FPpTP) were assessed based on the power threshold.
Of 6,039 encounters, 217 (3.6%) had MAEs (IM: 9.5%, OBGYN: 0.26%). Six hours prior to MAEs, the VC-MAES achieved an AUROC of 0.918 and an AUPRC of 0.352, including the OBGYN subgroup (AUROC, 0.964; AUPRC, 0.388), outperforming the NEWS (0.797 and 0.124) and MEWS (0.722 and 0.079). The FPpTP was reduced by up to 71%. Baseline VC-MAES was strongly associated with MAEs (P<0.001).
The VC-MAES significantly outperformed traditional EWSs in predicting adverse events in general ward patients. The robust performance and lower FPpTP suggest that broader adoption of the VC-MAES may improve clinical efficiency and resource allocation in general wards.
普通病房患者的急性病情恶化常导致重大不良事件(MAEs),包括非计划的重症监护病房转运、心脏骤停或死亡。传统的早期预警评分(EWSs)预测准确性有限,假阳性频繁。我们在韩国一家三级医疗中心对基于人工智能(AI)的早期预警评分——生命护理 - 重大不良事件评分(VC - MAES)进行了一项前瞻性观察性外部验证研究。
纳入普通病房的成年患者,包括内科(IM)和妇产科(OBGYN)——后者在既往基于AI的早期预警评分研究中很少被研究。使用受试者操作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)以及基线早期预警评分值的逻辑回归,将VC - MAES预测与国家早期预警评分(NEWS)和改良早期预警评分(MEWS)预测进行比较。基于功率阈值评估每真阳性的假阳性(FPpTP)。
在6039次就诊中,217例(3.6%)发生了重大不良事件(内科:9.5%,妇产科:0.26%)。在重大不良事件发生前6小时,VC - MAES的AUROC为0.918,AUPRC为0.352,包括妇产科亚组(AUROC,0.964;AUPRC,0.388),优于NEWS(0.797和0.124)和MEWS(0.722和0.079)。FPpTP降低了多达71%。基线VC - MAES与重大不良事件密切相关(P<0.001)。
在预测普通病房患者的不良事件方面,VC - MAES显著优于传统早期预警评分。强大的性能和较低的FPpTP表明,更广泛地采用VC - MAES可能会提高普通病房的临床效率和资源分配。