Suppr超能文献

优化经典风险评分以预测头颈部手术并发症:一种新方法。

Optimizing classical risk scores to predict complications in head and neck surgery: a new approach.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Hospital De Braga, Sete Fontes - São Victor, 4710-243, Braga, Portugal.

Polyvalent Intensive Care Unit, Hospital Garcia de Orta, E.P.E, Almada, Portugal.

出版信息

Eur Arch Otorhinolaryngol. 2021 Jan;278(1):191-202. doi: 10.1007/s00405-020-06133-1. Epub 2020 Jun 18.

Abstract

PURPOSE

To validate tools to identify patients at risk for perioperative complications to implement prehabilitation programmes in head and neck surgery (H&N).

METHODS

Retrospective cohort including 128 patients submitted to H&N, with postoperative Intermediate Care Unit admittance. The accuracy of the risk calculators ASA, P-POSSUM, ACS-NSQIP and ARISCAT to predict postoperative complications and mortality was assessed. A multivariable analysis was subsequently performed to create a new risk prediction model for serious postoperative complications in our institution.

RESULTS

Our 30-day morbidity and mortality were 45.3% and 0.8%, respectively. The ACS-NSQIP failed to predict complications and had an acceptable discrimination ability for predicting death. The discrimination ability of ARISCAT for predicting respiratory complications was acceptable. ASA and P-POSSUM were poor predictors for mortality and morbidity. Our new prediction model included ACS-NSQIP and ARISCAT (area under the curve 0.750, 95% confidence intervals: 0.63-0.87).

CONCLUSION

Despite the insufficient value of these risk calculators when analysed individually, we designed a risk tool combining them which better predicts the risk of serious complications.

摘要

目的

验证用于识别头颈部手术(H&N)围手术期并发症风险患者的工具,以实施康复前计划。

方法

回顾性队列研究纳入了 128 例接受 H&N 手术并需要入住术后中级护理病房的患者。评估了 ASA、P-POSSUM、ACS-NSQIP 和 ARISCAT 风险计算器预测术后并发症和死亡率的准确性。随后进行了多变量分析,以创建我们机构严重术后并发症的新风险预测模型。

结果

我们的 30 天发病率和死亡率分别为 45.3%和 0.8%。ACS-NSQIP 未能预测并发症,对死亡的预测能力尚可。ARISCAT 对预测呼吸系统并发症的判别能力尚可。ASA 和 P-POSSUM 对死亡率和发病率的预测能力较差。我们的新预测模型包括 ACS-NSQIP 和 ARISCAT(曲线下面积为 0.750,95%置信区间:0.63-0.87)。

结论

尽管这些风险计算器单独分析时价值不足,但我们设计了一种结合使用它们的风险工具,可更好地预测严重并发症的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fdb/7302498/57da7de1fdd9/405_2020_6133_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验